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Preface

Preface

In this volume I present some examples of plane integrals, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
13th October 2007
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1 Plane integrals, rectangular coordinates

Example 1.1 Calculate in each of the following cases the given plane integral by applying the theorem
of reduction for rectangular coordinates. Sketch first the domain of integration B.

1)
∫

B

1
(x + y)2

dS, where B = {(x, y) | 1 ≤ x ≤ 2 og 0 ≤ y ≤ x3}.

2)
∫

B

x

1 + xy
dS, where B = [0, 1] × [0, 1].

3)
∫

B
(x sin y − yex) dS, where B = [−1, 1] ×

[
0,

π

2

]
.

4)
∫

B

√|y − x2| dS, where B = [−1, 1] × [0, 2].

5)
∫

B
(x2y2 + x) dS, where B = [0, 2] × [−1, 0].

6)
∫

B
|y| cos

πx

4
dS, where B = [0, 2] × [−1, 0].

7)
∫

B

x2

(1 + x + y)2
dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 1}.

8)
∫

B
(4 − y) dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x2 + y2 ≤ 2}.

9)
∫

B
(
√

x − y2) dS, where B is the bounded set in the first quadrant, which is bounded by the curves
y = x2 and x = y4.

10)
∫

B
x cos(x + y) dS, where B is the triangle of the vertices (0, 0), (0, 0), (π, 0) and (π, π).

11)
∫

B
x 3

√
1 + y − y2 +

1
3

y3 dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 1}.

12)
∫

B
(3y2 + 2xy) dS, where B = {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 1}.

A Plan integrals in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

0

2

4

6

8

0.5 1 1.5 2 2.5 3

x

Figure 1: The domain B of Example 1.1.1.

 Plane integrals, rectangular coordinates
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I 1) We get by the theorem of reduction,∫
B

1
(x + y)2

dS =
∫ 2

1

{∫ x3

0

1
(x + y)2

dy

}
dx =

∫ 2

1

[
− 1

x + y

]x3

y=0

dx

=
∫ 2

1

{
− 1

x + x3
+

1
x

}
dx =

∫ 2

1

{
− 1

x
+

x

1 + x2
+

1
x

}
dx

=
[
1
2

ln(1 + x2)
]2

1

=
1
2

ln
(

5
2

)
.
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Figure 2: The domain B of Example 1.1.2.

2) We get by the theorem of reduction,∫
B

x

1 + xy
dS =

∫ 1

0

{∫ 1

0

x

1 + xy
dy

}
dx =

∫ 1

0

[ln(1 + xy)]1y=0 dx

=
∫ 1

0

1 · ln(1 + x) dx = [x ln(1 + x)]10 −
∫ 1

0

x

1 + x
dx

= ln 2 −
∫ 1

0

{
1 − 1

1 + x

}
dx = ln 2 − 1 + ln 2

= 2 ln 2 − 1.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

–1 –0.5 0.5 1

x

Figure 3: The domain B of Example 1.1.3.
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3) We get by the theorem of reduktion,∫
B

(x sin y − yex) dS =
∫ π

2

0

{∫ 1

−1

(x sin y − yex) dx

}
dy

= 0 −
∫ π

2

0

y ·
(

e − 1
e

)
dy = −1

2
(e − e−1)

[
y2
]π2
0

= −π2

4
sinh 1

(
= −π2(e2 − 1)

8e

)
,

where we first integrate with respect to x and then with respect to y.

0

0.5

1

1.5

2

y

–1 –0.5 0.5 1

x

Figure 4: The domain B of Example 1.1.4.

4) Here, the curve y = x2 may cause some troubles. For symmetric reasons∫
B

√
|y − x2| dS =

∫ 1

−1

{∫ 2

0

√
|y − x2| dy

}
dx

= 2
∫ 1

0

{∫ x2

0

√
x2 − y dy +

∫ 2

x2

√
y − x2 dy

}
dx

= 2
∫ 1

0

{[
−2

3
(x2 − y)

3
2

]x2

y=0

+
[
2
3
(y − x2)

3
2

]2

y=x2

}
dx

= 2
∫ 1

0

{
2
3
(x2)

3
2 +

2
3
(2 − x2)

3
2

}
dx =

4
3

∫ 1

0

x3 dx +
4
3
· 2

√
2
∫ 1

0

{
1 −

(
x√
2

)2
} 3

2

dx

=
1
3

+
16
3

∫ √
2

2

0

{1 − t2} 3
2 dt =

1
3

+
16
3

∫ π
4

0

{1 − sin2 u} 3
4 cos u du

=
1
3

+
16
3

∫ π
3 4

+

cos4 u du =
1
3

+
16
3

∫ π

0

4
(

1 + cos 2u

2

)2

du

=
1
3

+
4
3

∫ π
4

0

{
1 + 2 cos 2u +

1 + cos 4u

2

}
du

=
1
3

+
4
3

[
3
2

u + sin 2u +
1
8

sin 4u

]π
4

0

=
1
3

+
π

2
+

4
3

=
5
3

+
π

2
.

 Plane integrals, rectangular coordinates
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Figure 5: The domain B of Example 1.1.5 and of Example 1.1.6.

5) Here,∫
B

(x2y2 + x) dS =
∫ 2

0

{∫ 0

−1

(x2y2 + x) dy

}
dx

=
∫ 2

0

[
1
3

x2y3 + xy

]0

y=−1

dx =
∫ 2

0

{
1
3

x2 + x

}
dx

=
[
1
9

x3 +
1
2

x2

]2

0

=
8
9

+
4
2

= 2 +
8
9

=
26
9

.

6) The domain is identical with that of Example 1.1.5. It follows that

∫
B

|y| cos
πx

4
dS =

∫ 0

−1

(−y) dy ·
∫ 2

0

cos
πx

4
dx =

[
−y2

2

]0

−1

· 4
π

[
sin

πx

4

]2
0

=
2
π

.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 6: The domain B of Example 1.1.7.
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7) Here,∫
B

x2

(1 + x + y)2
dS =

∫ 1

0

{∫ 1−x

0

x2

(1 + x + y)2
dy

}
dx =

∫ 1

0

[
− x2

1 + x + y

]1−x

y=0

dx

=
∫ 1

0

{
x2

1 + x
− x2

2

}
dx =

∫ 1

0

{
x − 1 +

1
x + 1

− x2

2

}
dx

=
[
x2

2
− x + ln(1 + x) − x3

6

]1

0

=
1
2
− 1 + 2 ln 2 − 1

6
= ln 2 − 2

3
.

 Plane integrals, rectangular coordinates
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Figure 7: The domain B of Example 1.1.8.

8) The domain is a quarter of a disc in the first quadrant, hence by combining the method of
identifying obvious areas and the theorem of reduction in rectangular coordinates,∫

B

(4 − y) dS = 4area(B) −
∫ √

2

0

{∫ √
2−x2

0

y dy

}
dx = 4 · 1

4
π(
√

2)2 −
∫ √

2

0

[
1
2

y2

]√2−x2

y=0

dx

= 2π − 1
2

∫ √
2

0

(2 − x2)dx = 2π −
√

2 +
1
6
(
√

2)3 = 2π − 2
3

√
2.

Alternatively we get by using polar coordinates instead, cf. Example 2.1.1,∫
B

(4 − y) dS = 4area(B) −
∫ π

2

0

{∫ √
2

0

� sin ϕ · � d�

}
dϕ

= 2π + [cos ϕ]
π
2
0 ·

[
�3

3

]√2

0

= 2π − 2
3

√
2.

–0.2

0

0.2

0.4

0.6

0.8

1

y

–0.2 0.2 0.4 0.6 0.8 1

x

Figure 8: The domain B of Example 1.1.9.

9) When x = y4 in the first quadrant, the inverse function is given by y = 4
√

x, and it follows by

 Plane integrals, rectangular coordinates
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the theorem of reduction that∫
B

(
√

x − y2) dS =
∫ 1

0

{∫ 4√x

x2
(
√

x − y2) dy

}
dx =

∫ 1

0

[
y
√

x − 1
3

y3

] 4√x

y=x2

dx

=
∫ 1

0

{
x

3
4 − 1

3
x

3
4 − x

5
2 +

1
3

x6

}
dx =

[
2
3
· 4
7

x
7
4 − 2

7
x

7
2 +

2
1

x7

]1

0

=
8
21

− 2
7

+
1
21

=
1
7
.

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3

x

Figure 9: The domain B of Example 1.1.10.

10) The domain is the triangle bounded by the X-axis, the line x = π and the line y = x. We get
by the theorem of reduction,∫

B

x cos(x + y) dS =
∫ π

0

{∫ x

0

x cos(x + y) dy

}
dx =

∫ π

0

[x sin(x + y)]xy=0dx

=
∫ π

0

{x sin 2x − x sin x} dx =
[
−x · 1

2
cos 2x + x cos x

]π

0

+
∫ π

0

{
1
2

cos 2x − cos x

}
dx

= −π

2
− π +

[
1
4

sin 2x − sinx

]π

0

= −3π

2
.

11) Here, the idea of first (i.e. innermost) integrating with respect to y for fixed x is stillborn,
so we interchange the order of integration. We shall therefore first (innermost) integrate with

 Plane integrals, rectangular coordinates
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Figure 10: The domain B of Example 1.1.11 and of Example 1.1.12.

respect to x and then outermost with respect to y.∫
B

x
3

√
1 + y − y2 +

1
3

y3 dS =
∫ 2

0

{∫ 1−y

0

x

{
1 + y − y2 +

1
3

y3

} 1
3

dx

}
dy

=
1
2

∫ 1

0

{
1 + y − y2 +

1
3

y3

} 1
3

(1 − y)2 dy

=
1
2

∫ 1

0

{
4
3

+
1
3
(y3 − 3y2 + 3y − 1)

} 1
3

(y − 1)2 dy

=
1
2

∫ 1

y=0

{
4
3

+
1
3
(y − 1)3

} 1
3

d

(
1
3
(y − 1)3

)
=

1
2
· 3
4

[(
4
3

+
1
3
(y − 1)3

) 4
3
]1

y=0

=
3
8

{(
4
3

) 4
3

−
(

4
3
− 1

3

) 4
3
}

=
3
8

{(
4
3

) 4
3

− 1

}
=

1
2

3

√
4
3
− 3

8
.

12) The sketch of B is identical with Example 1.1.11. We get by the theorem of reduction,∫
B

(3y2 + 2xy) dS =
∫ 1

0

{∫ 1−y

0

(3y2 + 2xy) dx

}
dy

=
∫ 1

0

{
3y2(1 − y) + y(1 − y)2

}
dy =

∫ 1

0

{
3y2 − 3y2 + y − 2y2 + y3

}
dy

=
∫ 1

0

(
y + y2 − 2y3

)
dy =

1
2

+
1
3
− 2 · 1

4
=

1
3
.

 Plane integrals, rectangular coordinates
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Example 1.2 Let B be the rectangle [0, 2π] ×
[
5
4
,
5
3

]
. Reduce the plane integral

∫
B

1
y + sin x

dS

in two ways, and then show the formula∫ 2π

0

ln
(

5 + 3 sin x

5 + 4 sin x

)
dx = 2π ln

(
9
8

)
.

A Plane integral.

D Reduce the plane integral in two different ways as double integrals, and then just compute.

I First note that the domain of integration is given by

y + sin x > 0 and y ≥ 5
4

> 1.

Then we reduce the plane integral in two different ways as double integrals,

∫
B

1
y + sinx

dS =
∫ 2π

0

{∫ 5
3

5
4

1
y + sin x

, dy

}
dx =

∫ 5
3

5
4

{∫ 2π

0

1
y + sinx

dx

}
dy.

 Plane integrals, rectangular coordinates
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By using that sinx is periodic, and then introducing the substitution t = tan
x

2
, we get

∫ 5
3

5
4

{∫ 2π

0

1
y + sin x

dx

}
dy =

∫ 5
3

5
4

{∫ π

−π

1
y + sin x

dx

}
dy

=
∫ 5

3

5
4

{∫ π

−π

1
y sin2 x

2 + 2 sin x
2 cos x

2 + y cos2 x
2

dx

}
dy

= 2
∫ 5

3

5
4

{∫ +∞

−∞

1
yt2 + 2y + y

dt

}
dy = 2

∫ 5
3

5
4

1
y

{∫ +∞

−∞

1
u2 + 2

y + 1
du

}
dy

= 2
∫ 5

3

5
4

1
y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ +∞

−∞

1(
u +

1
y

)2

+ 1 − 1
y2

du

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dy

= 2
∫ 5

3

5
4

1
y

1√
1 − 1

y2

⎡
⎢⎢⎣Arctan

⎛
⎜⎜⎝

u +
1
y√

1 − 1
y2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+∞

u=−∞

dy = 2π

∫ 5
3

5
4

1√
y2 − 1

dy

= 2π
[
ln
(
y +

√
y2 − 1

)] 5
3

5
4

= 2π

⎧⎨
⎩ln

⎛
⎝5

3
+

√(
5
3

)2

− 1

⎞
⎠− ln

⎛
⎝5

4
+

√(
5
4

)2

− 1

⎞
⎠
⎫⎬
⎭

= 2π

{
ln
(

5
3

+
4
3

)
− ln

(
5
4

+
3
4

)}
= 2π{ln 3 − ln 2} = 2π ln

(
3
2

)
.

On the other hand,

∫ 2π

0

{∫ 5
3

5
4

1
y + sinx

dy

}
dx =

∫ 2π

0

[ln(y + sinx)]
5
3
y= 5

4
dx =

∫ 2π

0

ln
( 5

3 + sinx
5
4 + sinx

)
dx

=
∫ 2π

0

{
ln
(

4
3

)
+ ln

(
5 + 3 sin x

5 + 4 sin x

)}
dx = 2π ln

(
4
3

)
+
∫ 2π

0

ln
(

5 + 3 sin x

5 + 4 sin x

)
dx.

As a conclusion we get∫
B

1
y + sinx

dS = 2π ln
(

4
3

)
+
∫ 2π

0

ln
(

5 + 3 sinx

5 + 4 sinx

)
dx = 2π ln

(
3
2

)
.

Finally, by a rearrangement∫ 2π

0

ln
(

5 + 3 sinx

5 + 4 sin x

)
dx2π

{
ln
(

3
2

)
− ln

(
4
3

)}
= 2π ln

(
9
8

)
,

as required.
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Example 1.3 The unit square E = [0, 1]× [0, 1] is divided by the straight line of equation y = x into
two triangles: T1 given by y ≤ x, and T2 given by y > x. We define a function f : E → R in the
following way:

f(x, y) =

⎧⎨
⎩

x2 + 2y, (x, y) ∈ T1,

1 + 3y2, (x, y) ∈ T2.

Compute the plane integral
∫

E
f(x, y) dS.

A Plane integral.

D Reduce over each of the sets T1 and T2. The plane integral can be reduced to double integrals in
2 × 2 = 4 different ways, of which we only show one.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 11: The triangle T1 has an edge along the X-axis, and the triangle T2 has an edge along the
Y -axis.

I From

T1 = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
T2 = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y},

follows (note the two different successions of the order of integration)∫
E

f(x, y) dS =
∫

T1

f(x, y) dS +
∫

T2

f(x, y) dS

=
∫ 1

0

{∫ x

0

(x2 + 2y) dy

}
dx +

∫ 1

0

{∫ y

0

(1 + 3y2) dx

}
dy

=
∫ 1

0

[
x2y + y2

]x
y=0

dx +
∫ 1

0

[
x + 3y2x

]y
x=0

dy

=
∫ 1

0

(x3 + x2) dx +
∫ 1

0

(y + 3y3) dy

=
∫ 1

0

(4t3 + t2 + t) dt =
[
t4 +

1
3

t3 +
1
2

t2
]1

0

= 1 +
1
3

+
1
2

=
11
6

.
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Example 1.4 Let D be the set which is bounded by the curve y = ex, and the line x = 1, and the
coordinate axes. Sketch D, and compute the plane integral∫

D

1
(1 + y)2 coshx

dS.

A Plane integral in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

0

0.5

1

1.5

2

2.5

3

y

0.2 0.4 0.6 0.8 1 1.2 1.4

x

I When we reduce the plane integral, introduce the substitution u = ex, and apply a decomposition,
we get

∫
D

1
(1 + y)2 cosh x

dS =
∫ 1

0

1
cosh x

{∫ ex

+

1
(1 + y)2

dy

}
dx =

∫ 1

0

2ex

e2x + 1

[
− 1

1 + y

]ex

y=0

dx

=
∫ 1

0

{
2ex

e2x + 1
− 2ex

e2x + 1
· 1
ex + 1

}
dx =

∫ e

1

{
2

u2 + 1
− 2

(u2 + 1)(u + 1)

}
du

=
∫ e

1

{
2

u2 + 1
− 1

u + 1
− 2

(u2 + 1)(u + 1)
+

1
u + 1

}
du

=
∫ e

1

{
2

u2 + 1
− 1

u + 1
+

u2 + 1 − 2
(u2 + 1)(u + 1)

}
du

=
∫ e

1

{
2

u2 + 1
− 1

u + 1
+

u

u2 + 1
− 1

u2 + 1

}
du

=
∫ e

1

{
1

u2 + 1
+

u

u2 + 1
− 1

u + 1

}
du =

[
Arctan u +

1
2

ln(u2 + 1) − 1
2

ln(u + 1)
]e

1

= Arctan e − π

4
+

1
2

ln
(

e2 + 1
(e + 1)2

)
− 1

2
ln
(

1 + 1
(1 + 1)2

)
,
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where we also can obtain the equivalent results

∫
D

1
(1 + y)2 cosh x

dS = Arctan e − π

4
+

1
2

ln
(

2(e2 + 1)
(e + 1)2

)

= Arctan e − π

4
+ ln

(
cosh 1
cosh2 1

2

)

= Arctan e − π

4
+ ln

(
2 cosh 1

1 + cosh 1

)
.
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Example 1.5 The function f : R+ × R+ → R is given by

f(x, y) =
x2 − y2

(x2 + y2)2
.

Note that the domain of the function is the open first quadrant. By the computations of integrals we
shall whenever necessary use a continuous extension to the axes.

1) Compute the double integrals

I1 =
∫ 1

0

{∫ 1

0

f(x, y) dy

}
dx og I2 =

∫ 1

0

{∫ 1

0

f(x, y) dx

}
dy.

2) It follows from 1) that I1 �= I2. Make a comment on this result by considering the plane integral
of the function f over the unit square [0, 1] × [0, 1].

A Double integrals.

D Compute I1, and apply that I2 = −I1 by an argument of symmetry.

I 1) We get when x �= 0,

∫ 1

0

f(x, y) dy =
∫ 1

0

x2 − y2

(x2 + y2)2
dy =

∫ 1

0

d

dy

(
y

x2 + y2

)
dy =

1
1 + x2

,

so

I1 =
∫ 1

0

{∫ 1

0

f(x, y) dy

}
dx =

∫ 1

0

1
1 + x2

dx = Arctan 1 =
π

4
.

From f(y, x) = −f(x, y) follows by interchanging the letters and by a small argument of
symmetry that

I2 =
∫ 1

0

{∫ 1

0

f(x, y) dx

}
dy =

∫ 1

0

{∫ 1

0

f(y, x) dy

}
dx

= −
∫ 1

0

{∫ 1

0

f(x, y) dy

}
= −I1 = −π

4
�= I1.

2) The plane integral
∫
[0,1]2

f(x, y) dx dy is improper at (0, 0), and it is not convergent. If e.g.

D =
{

(x, y) ∈ [0, 1]2
∣∣∣∣ y <

1
2

x

}
,

then∫
D

x2 − y2

(x2 + y2)2
dx dy ≥

∫
D

x2 − 1
4 x2

(x2 + 1
4 x2)2

dx dy

=
∫ 1

0

3
4 x2

( 5
4 )2x4

· 1
2

x dx =
3
4
· 42

52
· 1
2

∫ 1

0

1
x

dx = +∞,

and D ⊂ [0, 1] × [0, 1].
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Example 1.6 Find the domain B for

f(x, y) =
√

1 − x2 − y2 +
√

x2y.

Then find the range f(B) and the plane integral∫
B

f(x, y) dS.

A Domain, range and plane integral.

D Use the standard methods. When we calculate the plane integral we neglect the zero set.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 12: The domain B. Notice the interval on the negative Y -axis.

I The function is defined and continuous when x2 + y2 ≤ 1 and x2y ≥ 0. From the first condition
follows that B is contained in the closed unit disc. From the second condition follows that if x �= 0,
then y ≥ 0; however, if x = 0, then x2y = 0 for every y, so the latter term is defined in union of
the closed upper half plane and the y-axis.

The domain is the intersection of these closed domains, i.e. union of the closed half disc in the
upper half plane and the interval [−1, 0] on the y-axis, cf. the figure.

Since f is continuous in B, and B is closed and bounded and connected, then f has a maximum
value S and a minimum value M in B (second main theorem), and by the first main theorem the
range is connected, so f(B) = [M,S].

We shall search the maximum and the minimum among:

1) the interior points, where f is not differentiable (the exceptional points: x = 0 and 0 < y < 1),
2) the interior stationary points (i.e. inside the set x2 + y2 < 1, y > 0, x �= 0),
3) the boundary points.

1) The restriction of f to x = 0 and y ∈ ]0, 1[ is

ϕ(y) =
√

1 − y2, y ∈ ]0, 1[.

This function is decreasing and of the range ]0, 1[, so it has neither a minimum value nor a
maximum value.
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2) If (x, y) is a stationary point in the open quarter disc in the first quadrant, then (−x, y) is
clearly a stationary point in the open quarter disc in the second quadrant, and vice versa.
Now, f only contains x in the form x2, so the value is the same, f(x, y) = f(−x, y). It will
therefore suffice to consider the quarter disc

{(x, y) | x > 0, y > 0, x2 + y2 < 1}

in the first quadrant. We have in this subdomain,

f(x, y) =
√

1 − x2 − y2 + x
√

y.

The equations of possible stationary points are here⎧⎪⎪⎨
⎪⎪⎩

∂f

∂x
= − x√

1 − x2 − y2
+
√

y = 0,

∂f

∂y
= − y√

1 − x2 − y2
+

1
2

x√
y

= 0,

and it follows from x > 0 and y > 0 that

xy√
1 − x2 − y2

= y
√

y =
1
2

x2

√
y
.

Hence y2 =
1
2

x2, so y = +
1√
2

x. But then

y =
1√
2

x =
x2

1 − x2 − y2
=

x2

1 − 3
2 x2

,

hence by a rearrangement,

x2 + 2
√

2
3

x − 2
3

= 0.

The solutions are x = −√
2 (must be rejected because we are only considering points of the unit

disc in the first quadrant) and x =
√

2
3

, corresponding to y =
1√
2

x =
1
3
. Clearly,

(√
2

3
,
1
3

)

is an inner point of the domain, so it is a stationary point. Then by the above,

(
−
√

2
3

,
1
3

)
is

also a stationary point, and these two points are the only stationary points. The value of the
functions is here

f

(
±
√

2
3

,
1
3

)
=

√
1 − 2

9
− 1

9
+

√
2

3

√
1
3

=

√
2
3

+
1
3

√
2
3

=
4
3

√
2
3
.

3) The examination of the boundary is split into

a) The circular arc, x2 + y2 = 1, x ∈ [−1, 1], y ∈ [0, 1].
b) The line segment on the X-axis, y = 0, x ∈ [−1, 1].
c) The line segment on the Y -axis, x = 0, y ∈ [−1, 0].
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a) Since f(−x, y) = f(x, y), it suffices to consider the quarter circular arc x2 = 1 − y2, x ≥ 0,
y ≥ 0. The restriction of f becomes

ϕ(y) =
√

(1 − y2)y =
√

y − y3, y ∈ [0, 1].

Since ϕ and Φ(y) = ϕ(y)2 = y − y3 attain their maximum value and minimum value at the
same points we compute

Φ′(y) = 1 − 3y2, hence Φ′(y) = 0 for y =
1√
3
.

Correspondingly, x = ±
√

2
3
, and

f

(
±
√

2
3
,

√
1
3

)
=

√
2
3
· 1√

3
=

1
3

√
2
√

3.

At the end points

[f(−1, 0) =] f(1, 0) = 0 and f(0, 1) = 0.
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b) When y = 0 and x ∈ [−1, 1], the restriction of f is given by

f(x, 0) =
√

1 − x2, x ∈ [−1, 1],

which clearly has its maximum value f(0, 0) = 1 and its minimum value f(−1, 0) = f(1, 0) =
0.

c) When x = 0 and y ∈ [−1, 0], we get

f(0, y) =
√

1 − y2, y ∈ [−1, 0],

with the maximum value f(0, 0) = 1 and the minimum value f(0, 1) = 0.

It follows by a numerical comparison that the minimum value is attained at the boundary points

M = f(1, 0) = f(0, 1) = f(−1, 0) = f(+,−1) = 0,

and the maximum value is attained at the stationary points,

S = f

(√
2

3
,
1
3

)
= f

(
−
√

2
3

,
1
2

)
=

4
√

2
3
√

3
.

According to the first main theorem for continuous functions the range of the function is connected,
thus

f(B) = [M,S] =

[
0,

4
√

2
3
√

3

]
.

We shall finally compute a plane integral. Since f(x, y) is continuous on B, and the interval on
the Y -axis in the lower half plane is a null set, the integral is zero over this part.

Let B̃ denote the closed half disc in the upper half plane. Then we get by reduction in polar
coordinates∫

B

f(x, y) dS =
∫

B̃

{√
1 − x2 − y2 +

√
x2y

}
dS

=
∫ π

0

{∫ 1

0

(√
1 − �2 +

√
�2 cos2 ϕ · � sin ϕ

)
� d�

}
dϕ

=
π

2

∫ 1

0

(
1 − �2

) 1
2 2� d� + 2

∫ π
2

0

| cos ϕ|
√

sin ϕ dϕ ·
∫ 1

0

�
5
2 d�

=
π

2

[
−2

3
(
1 − �2

) 3
2

]1

0

+ 2
[
2
3

(sin ϕ)
3
2

]π
2

ϕ=0

·
[
2
7

�
7
2

]1

�=0

=
π

2
· 2
3

+ 2 · 2
3
· 2
7

=
π

3
+

8
21

.
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Example 1.7 Calculate the plane integral∫
B

3xy dx dy,

where B is the closed set in the first quadrant, which is bounded by the parabola of the equation
y = 4 − 4x2 and the coordinate axes.

A Plane integral.

D Sketch the domain and compute the plane integral.

1

2

3

4

–0.2 0.20.40.60.8 1 1.2

x

Figure 13: The domain of integration B.

I We get immediately,

∫
B

3xy dy dx = 3
∫ 1

0

x

{∫ 4−4x2

0

y dy

}
dx =

3
2

∫ 1

0

x
(
4 − 4x2

)2
dx

=
3
2
· 16 · 1

2

∫ 1

0

(1 − t)2 dt = 12
∫ 1

0

u2 du = 4.

Example 1.8 Let B denote the bounded set in the (X,Y )-plane, which is bounded by the line y = x
and the parabola y = x2. Compute the plane integral∫

B

x2y dx dy.

A Plan integral.

D First sketch B.

I Since

B
{
(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x

}
,

the plane integral is reduced to∫
B

x2y dx dy =
∫ 1

0

x2

{∫ x

x2
y dy

}
dx =

1
2

∫ 1

0

x2
[
y2
]x
x2 dx =

1
2

∫ 1

0

(
x4 − x6

)
dx =

1
2

(
1
5
− 1

7

)
=

1
35

.
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 14: The domain B.

Example 1.9 Let the set B be given by the inequalities

x ≥ 0, y ≥ 0,
x

a
+

y

h
≤ 1.

where a and h are positive constants. Sketch B, and then compute the plane integral

J =
∫

B

x3y dS.

A Plane integral.

D Follow the guidelines and apply one of the theorems of reduction.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.5 1 1.5 2

x

Figure 15: The domain B when a = 2 and h = 1.

I Since the integrand contains y of lower exponent than x, it will be easier first (i.e. innermost) to
integrate vertically with respect to y, i.e. for fixed x,

0 ≤ y ≤ h
(
1 − x

a

)
, 0 ≤ x ≤ a.
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Then by means of the theorem of reduction in rectangular coordinates,

J =
∫

B

x3y dS =
∫ a

0

x3

(∫ h(1− x
a )

0

y dy

)
=
∫ a

0

x3 · h2

2

(
1 − x

a

)2

dx

=
h2

2

∫ a

0

x3

(
1 − 2

a
x +

1
a2

x2

)
dx =

h2

2

∫ a

0

(
x3 − 2

a
x4 +

1
a2

x5

)
dx

=
h2

2

[
x4

4
− 2

5a
x5 +

1
6a2

x6

]a

0

=
h2

2

(
a2

4
− 2

5
a4 +

1
6

a4

)

=
h2a4

2

(
1
4
− 2

5
+

1
6

)
=

h2a4

2
· 15 − 24 + 10

60
=

1
120

h2a4.

If we alternatively first integrate horizontally with respect to x, i.e.

0 ≤ x ≤ a
(
1 − y

h

)
, 0 ≤ y ≤ h,

then we get by another theorem of reduction in rectangular coordinates, where we apply the
substitution t = 1 − y

h
, y = h(1 − t) and dy = −h dt,

J =
∫

B

x3y dS =
∫ h

0

y

(∫ a(1− y
h )

0

x3 dx

)
dy =

∫ h

0

y · a4

4
·
(
1 − y

h

)4

dy

=
∫ 1

0

a4

4
· h(1 − t) · t4 · h dt =

a4h2

4

∫ 1

0

(
t4 − t5

)
dt =

a4h2

4

(
1
5
− 1

6

)
=

1
120

a4h2.
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2 Plane integral, polar coordinates

Example 2.1 Compute in each of the following cases the given plane integral by applying a theorem
of reduction for polar coordinates. First sketch the domain of integration B.

1)
∫

B
(4 − y) dS, where B is given by x ≥ 0, y ≥ 0, and x2 + y2 ≤ 2.

2)
∫

B
(a + y) dS, where B is given by 0 ≤ ϕ ≤ π

2
and 0 ≤ � ≤ a cos ϕ.

3)
∫

B

√
a2 − x2 − y2 dS, where B is given by −π

2
≤ ϕ ≤ π

2
and 0 ≤ � ≤ a cos ϕ.

4)
∫

B
xy dS, where B is given by 0 ≤ ϕ ≤ π

3
and 2 cos ϕ ≤ � ≤ 4

1 + cos ϕ
.

5)
∫

B

x(x + y)
(2x2 + y2)(x2 + y2)

3
2

dS, where B is given by 0 ≤ ϕ ≤ π

4
and cos ϕ ≤ � ≤ cos ϕ + sinϕ.

6)
∫

B

1√
a2 + x2 + y2

dS, where B is the disc K((0, 0); a).

7)
∫

B

x

(x2 + y2)
3
2

dS, where B is given by −π ≤ ϕ ≤ π and b exp(a cos ϕ) ≤ � ≤ 1, and where

furthermore b < e−a.

8)
∫

B

x

(x2 + y2)
3
2

dS, where B is given by −π ≤ ϕ ≤ π and 1 ≤ � ≤ b exp(a cos ϕ), and where

furthermore b > ea.

9)
∫

B
(x2 − y2) dS, where B is given by −π

4
≤ ϕ ≤ π

2
and 0 ≤ � ≤ a.

10)
∫

B

√
x2 + y2 dS, where B is given by −π

2
≤ ϕ ≤ π

2
and 0 ≤ � ≤ a cos ϕ.

11)
∫

B
xy dS, where B is given by 0 ≤ ϕ ≤ π

4
and a ≤ � ≤ 2a cos2 ϕ.

A Plane integral in polar coordinates.

D Sketch the domain and apply the theorem of reduction.

I 1) This example is the same as Example 1.1.8. We shall only use polar coordinates in the present
case.
In polar coordinates B is described by

0 ≤ ϕ ≤ π

2
, 0 ≤ � ≤

√
2.

From the theorem of reduction in polar coordinates follows that

∫
B

(4 − y) dS = 4area(B) −
∫ π

2
0

{∫ √
2

0

� sin ϕ · � d�

}
dϕ

= 4 · 1
4
(
√

2)2 + [cos ϕ]
π
2
0 ·

[
1
3

�3

]√2

0

= 2π − 2
√

3
3

.
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Figure 16: The domain B of Example 2.1.1.
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Figure 17: The domain B of Example 2.1.2.

2) From 0 ≤ � ≤ a cos ϕ follows that

0 ≤ �2 = x2 + y2 = a� cos ϕ = ax,

so the domain is a half disc in the first quadrant of centrum
(a

2
, 0
)

and radius
a

2
. By the

reduction formula in polar coordinates,∫
B

(a + y) dS = a · area(B) +
∫

B

y dS = a · 1
2
· π
(a

2

)2

+
∫ π

2

0

{∫ a cos ϕ

0

� sin ϕ · � d�

}
dϕ

= π · a3

8
+
∫ π

2

0

[
1
3

�3 sin ϕ

]a cos ϕ

�=0

dϕ =
a3π

8
+

a3

3

∫ π
2

0

cos3 ϕ · sinϕ dϕ

=
πa3

8
− a3

12
[
cos4 ϕ

]π
2

0
= a3

(
π

8
+

1
12

)
.

3) Here B is the disc of centrum
(a

2
, 0
)

and radius
a

2
, cf. Example 2.1.2. From the reduction
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Figure 18: The domain B of Example 2.1.3.

formula in polar coordinates follows that∫
B

√
a2 − x2 − y2 dS =

∫ π
2

− pi
2

{∫ a cos ϕ

0

√
a2 − �2 · � d�

}
dϕ

= 2
∫ π

2

0

[
−1

3
(a2 − �2)

3
2

]a cos ϕ

�=0

dϕ =
2
3

∫ π
2

0

{
(a2)

3
2 − (a2 − a2 cos2 ϕ)

3
2

}
dϕ

=
2
3

∫ π
2

0

{
a3 − a3(1 − cos2 ϕ) sin ϕ

}
dϕ =

2
3

a3

{
π

2
+
∫ π

2

ϕ=0

(1 − cos2 ϕ) d cos ϕ

}

=
πa3

3
+

2
3

a3

[
cos ϕ − 1

3
cos3 ϕ

]π
2

ϕ=0

=
πa3

3
− 4

9
a3 =

a3

9
(3π − 4).

0

1

2

3

4

y

0.5 1 1.5 2

x

Figure 19: The domain B of Example 2.1.4.

4) From 2 cos ϕ ≤ � follows

2x = 2� cos ϕ ≤ �2 = x2 + y2,

which is rewritten as the inequality (x − 1)2 + y2 ≥ 1 for the complementary set of the disc of
centrum (1, 0) and radius 1.
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From � ≤ 4
1 + cos ϕ

follows � + � cos ϕ = � + x ≤ 4, i.e. � ≤ 4 − x, so x ≤ 4. Under this

assumption we get by a squaring that �2 = x2 + y2 ≤ (4 − x)2, hence

y2 ≤ (4 − x)2 − x2 = 4(4 − 2x) = 8(2 − x),

from which follows that we shall also require that x ≤ 2, because y2 ≥ 0.
The domain is bounded by the parabola y2 = 16− 8x and the circle (x− 1)2 + y2 = 1 and the
tow lines ϕ = 0 and ϕ =

π

3
.

 Plane integrals, polar coordinates
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Then by the theorem of reduction in polar coordinates followed by the substitution u = cos ϕ,∫
B

xy dS =
∫ π

3

0

{∫ 4
1+cos ϕ

2 cos ϕ

�3 sin ϕ · cos ϕ d�

}
dϕ

=
1
4

∫ π
3

0

sin ϕ · cos ϕ

{
44

(1 + cos ϕ)4
− 24 cos4 ϕ

}
dϕ

=
∫ π

3

0

{
64 cos ϕ

(1 + cos ϕ)4
− 4 cos5 ϕ

}
sin ϕ dϕ =

∫ 1

1
2

{
64(u + 1 − 1)

(u + 1)4
− 4u5

}
du

=
∫ 1

1
2

{
64

(u + 1)3
− 64

(u + 1)4
− 4u5

}
du

=
[
−1

2
· 64
(u + 1)2

+
1
3
· 64
(u + 1)3

− 4
6

u6

]1

1
2

= −32
4

+
1
3
· 64

8
− 2

3
+

32
9
4

− 1
3
· 64

27
8

+
2
3
· 1
64

= −8 +
8
3
− 2

3
+

128
9

− 512
81

+
1

3 · 32
= −6 +

1252 − 512
81

+
1

3 · 32

=
640 − 486

81
+

1
3 · 32

=
154
81

+
1

3 · 32
=

154 · 32 + 27
32 · 81

=
4955
2592

.
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Figure 20: The domain B of Example 2.1.5.

5) Here the condition cosϕ ≤ � implies that

� cos ϕ = x ≤ �2 = x2 + y2,

which we rewrite as(
x − 1

2

)2

+ y2 ≥ 1
4

=
(

1
2

)2

,

and we are describing the complementary set of a disc of centrum
(

1
2
, 0
)

and radius
1
2
.
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The condition � ≤ cos ϕ + sinϕ means that

�2 = x2 + y2 ≤ � cos ϕ + � sin ϕ = x + y,

which is rewritten as(
x − 1

2

)2

+
(

y − 1
2

)2

≤ 1
2

=
(

1√
2

)2

.

This inequality represents a disc of centrum
(

1
2
,
1
2

)
and radius

1√
2
. As also 0 ≤ ϕ ≤ π

4
, it is

now easy to sketch the domain B.
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Then by the theorem of reduction in polar coordinates,∫
B

x(x + y)
(2x2 + y2)(x2 + y2)

3
2

dS

=
∫ π

4

0

{∫ cos ϕ+sin ϕ

cos ϕ

�2(cos ϕ + sin ϕ) cos ϕ

�2(2 cos2 ϕ + sin2 ϕ)�3
· � d�

}
dϕ

=
∫ π

4

0

(cos ϕ + sin ϕ) cos ϕ

2 cos2 ϕ + sin2 ϕ

[
−1

�

]cos ϕ+sin ϕ

�=cos ϕ

dϕ

=
∫ π

4

0

{
cos ϕ + sinϕ

2 cos2 ϕ + sin2 ϕ
− cos ϕ

2 cos2 ϕ + sin2 ϕ

}
dϕ =

∫ π
4

0

sin ϕ

cos2 ϕ + 1
dϕ

= [− Arctan(cos ϕ)]
π
4
0 = Arctan 1 − Arctan

(√
2

2

)
=

π

4
− Arctan

(√
2

2

)
.

6) The disc K((0, 0); a) is described in polar coordinates by

−π ≤ ϕ ≤ π, 0 ≤ � ≤ a.

We shall here omit the sketch of the well-known disc of centrum (0, 0) and radius a.

Then by an application of the theorem of reduction in polar coordinates,

∫
B

1√
a2 + x2 + y2

dS =
∫ π

−π

{∫
0

�√
a2 + �2

d�

}
dϕ = 2π

[√
a2 + �2

]1
0

= 2πa(
√

2 − 1).

–1
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0

0.5

1

y

–1 –0.5 0.5 1

x

Figure 21: The domain B of Example 2.1.7, when a = 1 and b =
1
2e

.

7) The set is an annulus shaped domain which is neither nice in a rectangular description nor in
a polar description.
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When we reduce the plane integral it is fairly simple to get∫
B

x

(x2 + y2)
3
2

dS =
∫ π

−π

{∫ 1

b exp(a cos ϕ)

� cos ϕ

�3
· � d�

}
dϕ =

∫ π

−π

cos ϕ · [ln �]1b exp(a cos ϕ)dϕ

=
∫ π

−π

cos ϕ{− ln b − a cos ϕ}dϕ = −a

∫ π

−π

cos2 ϕ dϕ = −aπ.

–2

–1

0

1

2

y

–2 –1 1 2 3

x

Figure 22: The domain B of Example 2.1.8, when a =
1
3

and b = 2.

8) This case is similar to Example 2.1.7. We get

∫
B

x

(x2 + y2)
3
2

dS =
∫ π

−π

{∫ b exp(a cos ϕ)

1

cos ϕ

�
d�

}
dϕ = +aπ,

because, apart from the change of sign, the computations are formally the same as in Exam-
ple 2.1.7.

–0.5

0

0.5

1

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 23: The domain B of Example 2.1.9.

9) The set B is a circular sector os shown on the figure.
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Then by the theorem of reduction,∫
B

(x2 − y2) dS =
∫ π

2

−π
4

(∫
0

{
�2 cos2 ϕ − ϕ2 sin2 ϕ

}
� d�

)
dϕ

=
∫ π

2

−π
4

(∫ a

0

cos 2ϕ · �3 d�

)
dϕ =

[
1
2

sin 2ϕ

]π
2

−π
4

· a4

4
=

1
2
{0 − (−1)} · a4

4
=

a4

8
.
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Figure 24: The domain B of Example 2.1.10.

10) From 0 ≤ � ≤ a cos ϕ follows that

0 ≤ �2 = x2 + y2 = a� cos ϕ = ax,

so B is the closed disc of centrum
(a

2
, 0
)

and radius
a

2
.

Then by the theorem of reduction,∫
B

√
x2 + y2 dS =

∫ π
2

−π
2

{∫ a cos ϕ

0

� · � d�

}
dϕ =

a3

3

∫ π
2

−π
3

cos3 ϕ dϕ

=
a3

3

∫ π
2

−π
3

(1 − sin2 ϕ) cos ϕ dϕ =
a3

3

[
sinϕ − 1

3
sin3 ϕ

]π
2

−π
2

=
a3

3
· 2
(

1 − 1
3

)
=

4a3

9
.
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Figure 25: The domain B of Example 2.1.11.

11) There is no nice rectangular description of the domain. It follows by the theorem of reduction,∫
B

xy dS =
∫ π

4

0

{∫ 2a cos2 ϕ

1

� cos ϕ · � sin ϕ · � d�

}
dϕ

=
∫ π

4

0

cos ϕ sin ϕ

{∫ 2a cos2 ϕ

a

�3 d�

}
dϕ,

=
1
4

∫ π
4

0

cos ϕ · sin ϕ
[
(2a)4 cos8 ϕ − a4

]
dϕ (t = cos ϕ)

=
a4

4

∫ 1

1√
2

{
16t9 − t

}
dt =

a4

4

[
16
10

t10 − 1
2

t2
]1

1√
2

=
a4

4

{
8
5
− 1

2
− 8

5
· 1
32

+
1
2
· 1
2

}
=

a4

4

{
31
20

− 1
4

}

=
a4

4
· 26
20

=
13
40

a4.
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Example 2.2 In each of the following cases a plane integral of a continuous function f : B → R is
written as a double integral. Sketch in each case the set B, and set up the double integral, or the sum
of double integrals, which occur by interchanging the order or integration.

1)
∫ 1

0

{∫ x

x2 f(x, y) dy
}

dx.

2)
∫ e

1

{∫ ln x

0
f(x, y) dy

}
dx.

3)
∫ 2

1

{∫√
2x−x2

2−x
f(x, y) dy

}
dx.

4)
∫ 2

0

{∫ 0

−√
2x−x2 f(x, y) dy

}
dx.

5)
∫ 3

0

{∫√25−y2

4y
3

f(x, y) dx

}
dy.

6)
∫ 2

−6

{∫ 1−y
y2−4

4

f(x, y) dx

}
dy.

7)
∫ 1

0

{∫ 1−y

−
√

1−y2
f(x, y) dx

}
dy.

8)
∫ 3

0

{∫√25−y2

0
f(x, y) dx

}
dy.

A Interchange of the order of integrations in double integrals.

D Sketch the set B and set up the double integral in the reverse order. Notice that a nice description
in one case does not imply a nice description in the reverse order.
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Figure 26: The domain B of Example 2.2.1.

I 1) The domain is given by

B = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x} = {(x, y) | 0 ≤ y ≤ 1, y ≤ x ≤ √
y}.

In fact, it follows from the inner integral that x2 ≤ y ≤ x, from which it is easy to derive

y ≤ x ≤ √
y.
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By interchanging the order of integration we get

∫ 1

0

{∫ x

x2
f(x, y) dy

}
dx =

∫ 1

0

{∫ √
y

y

f(x, y) dx

}
dy.
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Figure 27: The domain B of Example 2.2.2.
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2) The domain is found in the same way as in Example 2.2.1. It is given by

B = {(x, y) | 1 ≤ x ≤ e, 0 ≤ y ≤ lnx} = {(x, y) | 0 ≤ y ≤ 1, ey ≤ x ≤ e},

hence by interchanging the order of integration,

∫ e

1

{∫ ln x

0

f(x, y) dy

}
dx =

∫ 1

0

{∫
ey

f(x, y) dx

}
dy.
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Figure 28: The domain B of Example 2.2.3.

3) This domain is bounded by the circle (x − 1)2 + y2 = 1 and the straight line y = 2 − x, hence

B = {(x, y) | 1 ≤ x ≤ 2, 2 − x ≤ y ≤
√

2x − x2}
= {(x, y) | 0 ≤ y ≤ 1, 2 − y ≤ x ≤ 1 +

√
1 − y2}.

When we interchange the order of integration we get

∫ 2

1

{∫ √
2x−x2

2−x

f(x, y) dy

}
dx =

∫ 1

0

{∫ 1+
√

1−y2

2−y

f(x, y) dx

}
dy.

4) The domain is that part of the disc (x− 1)2 + y2 ≤ 1 of centrum(1, 0) and radius 1, which lies
in the fourth quadrant, thus below the X-axis, so

B = {(x, y) | 0 ≤ x ≤ 2, −
√

2x − x2 ≤ y ≤ 0}
= {(x, y) | −1 ≤ y ≤ 0, 1 −

√
1 − y2 ≤ x ≤ 1 +

√
1 − y2}.

When we interchange the order of integration we get

∫ 2

0

{∫ 0

−√
2x−x2

f(x, y) dy

}
dx =

∫ 0

−1

{∫ 1+
√

1−y2

1−
√

1−y2
f(x, y) dx

}
dy.
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Figure 29: The domain B of Example 2.2.4.
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Figure 30: The domain B of Example 2.2.5.

5) The domain is bounded by the circle x2 + y2 = 52 and the lines y = 0 and y =
3
4

x. By the
alternative description we must cut the domain by the dotted line x = 4. Then we get the two
possible descriptions:

B =
{

(x, y)
∣∣∣∣ 0 ≤ y ≤ 3,

4y

3
≤ x ≤

√
25 − y2

}

=
{

(x, y)
∣∣∣∣ 0 ≤ x ≤ 4, 0 ≤ y ≤ 3x

4

}
∪ {(x, y) | 4 ≤ x ≤ 5, 0 ≤ y ≤

√
25 − x2}.

When we interchange the order of integration we obtain the following complicated expression

∫ 3

0

{∫ √
25−y2

4y
3

f(x, y) dx

}
dy =

∫ 4

0

{∫ 3x
4

0

f(x, y) dy

}
dx +

∫ 5

4

{∫ √
25−x2

0

f(x, y) dy

}
dx.

In this case we get the sum of two double integrals by interchanging the order of integration.

Remark. It follows from the form of the domain that it would be far more reasonable here to
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use polar coordinates, because B in these is described by

B =
{

(�, ϕ) | 0 ≤ � ≤ 5, 0 ≤ ϕ ≤ Arctan
3
4

}
,

and the integral is transformed into

∫ Arctan 3
4

0

{∫ 5

0

f̃(�, ϕ)� d�

}
dϕ. ♦

–6

–4

–2

2

y

2 4 6 8
x

Figure 31: The domain B of Example 2.2.6.

6) By inspection of the integral we see that the domain is given by

B =
{

(x, y)
∣∣∣∣ −6 ≤ y ≤ 2,

y2 − 4
4

≤ x ≤ 2 − y

}
.

It follows from the inequality
y2 − 4

4
≤ x that y2 ≤ 4(x+1), and likewise we get from x ≤ 2−y

that y ≤ 2 − x. Whenever the square root occurs (here by |y| ≤ 2
√

x + 1), we must be very
careful! The figure shows that we have to split by the line x = 0, so B is written as a union of
two sets which do not have the same structure,

B = {(x, y) | −1 ≤ x ≤ 0, −2
√

x + 1 ≤ y ≤ 2
√

x + 1}
∪{(x, y) | 0 ≤ x ≤ 8, −2

√
x + 1 ≤ y ≤ 2 − x}.

When we interchange the order of the integration we get a sum of two double integrals,

∫ 2

−6

{∫ 2−y

y2−4
4

f(x, y) dx

}
dy =

∫ 0

−1

{∫ 2
√

x+1

−2
√

x+1

f(x, y) dy

}
dx +

∫ 8

0

{∫ 2−x

−2
√

x+1

f(x, y) dy

}
dx.

7) The domain is bounded by the unit circle in the second quadrant, by the X-axis and by the
line y + x = 1. It is natural to split in the two subdomains along the Y -axis, thus

B = {(x, y) | 0 ≤ y ≤ 1, −
√

1 − y2 ≤ x ≤ 1 − y}
= {(x, y) | −1 ≤ x ≤ 0, 0 ≤ y ≤

√
1 − x2}∪ <, {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}.
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Figure 32: The domain B of Example 2.2.7.

Then by interchanging the order of integration,∫ 1

0

{∫ 1−y

−
√

1−y2
f(x, y) dx

}
dy =

∫ 0

−1

{∫ √
1−x2

0

f(x, y) dy

}
dx +

∫ 1

0

{∫ 1−x

0

f(x, y) dy

}
dx.
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y
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x

Figure 33: The domain B of Example 2.2.8.

8) The domain is described by

B = {(x, y) | 0 ≤ x ≤
√

25 − y2, 0 ≤ y ≤ 3},
thus B is that part of the quarter disc in the first quadrant of centrum (0, 2, ) and radius 5,
which also lies below the line y = 3. When we interchange the coordinates we must cut the
domain by the line x = 4. Then B is written as the union of the two sets,

B = {(x, y) | 0 ≤ y ≤
√

25 − x2, 4 ≤ x ≤ 5} ∪ {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 3}.
Then by interchanging the order of integration,

∫ 3

0

{∫ √
25−y2

0

f(x, y) dx

}
dy =

∫ 4

0

{∫ 3

0

f(x, y) dy

}
dx +

∫ 5

4

{∫ √
25−x2

0

f(x, y) dy

}
dx.
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Example 2.3 Sketch the point sets

B = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, xy ≥ 2}

and

D = {(x, y) | 1 ≤ x, 1 ≤ y, xy ≤ 2}.

Then compute the plane integrals∫
B

1
xy

dS and
∫

D

1
xy

dS.

 Plane integrals, polar coordinates
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A and D Sketch of a domain; computation of a plane integral.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 34: The domain B.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 35: The domain D.

I The domains are sketched on the two figures. We see that

B ∪ D = [1, 2] × [1, 2],

which may be exploited in one of the variants, because B and D have just one boundary curve in
common and are otherwise disjoint; cf. the alternative below.

From

B =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ 2,

2
x
≤ y ≤ 2

}
,

follows that∫
B

1
xy

dS =
∫ 2

1

{∫ 2

2
x

1
xy

dy

}
dx =

∫ 2

1

1
x

[ln y]22
x
dx =

∫ 2

1

1
x

lnx dx =
1
2
(ln 2)2.
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From

D =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

x

}
,

we get analogously

∫
D

1
xy

dS =
∫ 2

1

{∫ 2
x

1

1
xy

dy

}
dx =

∫ 2

1

1
x

[ln y]
2
x
1 dx

=
∫ 2

1

1
x
{ln 2 − lnx}dx =

[
ln 2 · lnx − 1

2
(ln x)2

]2

1

= (ln 2)2 − 1
2
(ln 2)2 =

1
2
(ln 2)2.

Alternatively,∫
B∪D

1
xy

dS =
∫ 2

1

dx

x
·
∫ 2

1

dy

y
= (ln 2)2 =

∫
B

1
xy

dS +
∫

D

1
xy

dS =
1
2
(ln 2)2 +

∫
D

1
xy

dS,

hence∫
D

1
xy

dS = (ln 2)2 − 1
2
(ln 2)2 =

1
2
(ln 2)2.

Example 2.4 Let B be the domain in the first quadrant, which is bounded by the curves of the
equations

y = x, y = 4x, xy = 1, xy = 2.

Describe B in polar coordinates and then compute the plane integral∫
B

x2 exp(xy) ln
(y

x

)
dS.

A Plane integral reduced by polar coordinates.

D Sketch B. Then describe B in polar coordinates.

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2

x
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I In polar coordinates the line y = 4x is described by ϕ = Arctan 4, and the line y = x by

ϕ = Arctan 1 =
π

4
.

Since

xy = �2 sin ϕ cos ϕ,

the hyperbola xy = 1 is described by

� =
1√

sinϕ cos ϕ
, ϕ ∈

[π

4
,Arctan 4

]
,

and the hyperbola xy = 2 by

� =
2√

sinϕ cos ϕ
, ϕ ∈

[π

4
,Arctan 4

]
.

Summarizing we get by the reduction of the plane integral in polar coordinates that∫
B

x2 exp(xy) ln
(y

x

)
dS

=
∫ Arctan 4

Arctan 1

{∫ 2/
√

sin ϕ cos ϕ

1/
√

sin ϕ cos ϕ

�2 cos2 ϕ · exp
(
�2 sin ϕ cos ϕ

)
ln(tan ϕ)� d�

}
dϕ.(1)

First compute the inner integral by using the substitution t = �2 sin ϕ cos ϕ, where ϕ is kept fixed.
This gives

∫ 2/
√

sin ϕ cos ϕ

1/
√

sin ϕ cos ϕ

�2 cos2 ϕ · exp
(
�2 sin ϕ cos ϕ

)
ln(tan ϕ)� d�

=
1
2

ln(tan ϕ)
sin2 ϕ

∫ 2

1

t et dt =
1
2

ln(tan ϕ)
sin2 ϕ

[
t et − et

]2
1

=
e2

2
ln(tan ϕ)

sin2 ϕ
.

When this result is put into (1), it follows by the substitution u = tan ϕ that

∫
B

x2 exp(xy) ln
(y

x

)
dS =

e2

2

∫ Arctan 4

Arctan 1

ln(tan ϕ)
sin2 ϕ

dϕ

=
e2

2

∫ Arccot 1
4

Arccot 1

(+ ln(cot ϕ)) · −1
sin2 ϕ

dϕ

=
e2

2

∫ 1
4

1

lnu du =
e2

2
[u ln u − u]

1
4
1

=
e2

2

(
1
4
· 2 ln

1
2
− 1

4
+ 1

)
=

e2

8
(3 − 2 ln 2).

Alternatively one may introduce the new variables

(u, v) =
(
xy,

y

x

)
.

 Plane integrals, polar coordinates
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This transformation is considered in all details in Example 5.2, so we shall just mention the main
points, namely

D = {(u, v) | 1 ≤ u ≤ 2, 1 ≤ v ≤ 4} = [1, 2] × [1, 4],

and

x(u, v) =
√

u

v
and y(u, v) =

√
uv,

and that the Jacobian is
1
2v

.

By the transformation of the plane integral

∫
B

x2 exp(xy) ln
(y

x

)
dS =

∫
D

u

v
· eu ln v · 1

2v
dudv =

1
2

∫ 2

1

ueudu ·
∫ 4

1

1
v2

ln v dv

=
1
2

[ueu − e]21 ·
[
− ln v

v
− 1

v

]4

1

=
1
2

e2

{
1 − ln 4

4
− 1

4

}
=

e2

8
(3 − 2 ln 2),

which is far easier than the method above. ♦

 Plane integrals, polar coordinates
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Example 2.5 Find the domain D of the function

f(x, y) =
√

a2 − x2 − y2,

where a is a positive constant. Then compute the plane integral∫
D

{f(x, y)}2 dx dy.

A Domain of a function, plane integral.

D Analyze f . Compute the plane integral by using polar coordinates.

I It follows immediately that

D = {(x, y) | x2 + y2 ≤ a2} = K(0; a),

and∫
D

{f(x, y)}2 dx dy =
∫

K(0;a)

{a2 − x2 − y2} dx dy

= a2 · area(K(0; a)) − 2π

∫ a

0

�2 · � d� = a2 · πa2 − 2π · a4

4
=

π

2
a4.

Example 2.6 Let the point set B be given by

B =
{

(x, y) ∈ R
2

∣∣∣∣ 0 ≤ x ≤ π

4
, x ≤ y ≤ 1

cos x

}
.

Find the value of the plane integral∫
B

y dS.

A Plane integral.

D Sketch the domain B and reduce to a double integral.

I By the reduction to a double integral we get

∫
B

y dS =
∫ π

4

0

{∫ 1/ cos x

x

y dy

}
dx =

∫ π
4

0

[
1
2

y2

]1/ cos x

x

dx =
1
2

∫ π
4

0

{
1

cos2 x
− x2

}
dx

=
1
2

[
tan x − 1

3
x3

]π
4

0

=
1
2

{
1 − 1

3
· π3

64

}
=

1
2
− π3

384
.

 Plane integrals, polar coordinates
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0
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Figure 36: The domain B.

Example 2.7 Compute the plane integral∫
B

yx2 dS,

where B er is the quarter disc given by the inequalities

1 ≤ x, 0 ≤ y, x2 + y2 ≤ 2x.

A Plane integral.

D There are at least three different solutions:

1) Reduction in rectangular coordinates.

2) Reduction in polar coordinates.

3) Reduction in a translated polar coordinate system.

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2

Figure 37: The quarter disc B.
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I First method. Reduction in rectangular coordinates.
The set B is described in rectangular coordinates by

B = {(x, y) | 0 ≤ y ≤
√

2x − x2, x ∈ [1, 2]}.

Hence∫
B

yx2 dS =
∫ 2

1

{∫ √
2x−x2

0

yx2 dy

}
dx =

1
2

∫ 2

1

x2{2x − x2} dx =
1
2

∫ 2

1

{
2x3 − x4

}
dx

=
1
2

[
x4

2
− x5

5

]2

1

=
1
4
{16 − 1} − 1

10
{32 − 1} =

75 − 62
20

=
13
20

.

Second method. Reduction in polar coordinates.

It follows from the figure that every point in B lies in the angular space ϕ ∈
[
0,

π

4

]
(den dotted

oblique line). We get the lower �-limit from a ≤ x = � cos ϕ,

1
cos ϕ

≤ �.

From �2 = x2 + y2 ≤ 2x = 2� cos ϕ we get the upper �-limit � ≤ 2 cos ϕ.
Summarizing, B is described in polar coordinates by{

(�, ϕ)
∣∣∣∣ 1

cos ϕ
≤ � ≤ 2 cos ϕ, ϕ ∈

[
0,

π

4

]}
.

Hence by reduction in polar coordinates,∫
B

yx2 dS =
∫ π

4

0

{∫ 2 cos ϕ

1
cos ϕ

� sin ϕ · {� cos ϕ}2 · � d�

}
dϕ

=
∫ π

4

0

sin ϕ · cos2 ϕ

{∫ 2 cos ϕ

1
cos ϕ

�4 d�

}
dϕ =

∫ π
4

0

sinϕ · cos2 ϕ

[
1
5

�5

]2 cos ϕ

1
cos ϕ

dϕ

=
1
5

∫ π
4

0

{
32 cos7 ϕ − 1

cos3 ϕ

}
sin ϕ dϕ =

1
5

[
−32 · 1

8
cos8 ϕ − 1

2
· 1
cos2 ϕ

]π
4

0

=
1
5

{
4
(
− cos8

π

4
+ 1

)
+

1
2

(
− 1

cos2 π
2

+ 1
)}

=
1
5

{
4
(
− 1

16
+ 1

)
+

1
2

(−2 + 1)
}

=
1
5

{
15
4

− 1
2

}
=

1
5
· 13

4
=

13
20

.

Third method. Translated polar coordinate system.
As x2 + y2 ≤ 2x can also be written (x − 1)2 + y2 ≤ 1, the set B can be described by{

(x, y)
∣∣∣ x = 1 + � cos ϕ, y = � sin ϕ, � ∈ [0, 1], ϕ ∈

[
0,

π

2

]}
,
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where the pole lies in (x, y) = (1, 0). Then we get the plane integral∫
B

yx2 dS =
∫ π

2

0

{∫ 1

0

� sin ϕ · {1 + � cos ϕ}2� d�

}
dϕ

=
∫ π

2

0

{∫ 1

0

�2
{
1 + 2� cos ϕ + �2 cos2 ϕ

}
d�

}
sin ϕ dϕ

=
∫ π

2

0

[
�3

3
+

�4

2
cos ϕ +

�5

5
cos2 ϕ

]1

�=0

sin ϕ dϕ

=
∫ π

2

0

{
1
3

+
1
2

cos ϕ +
1
5

cos2 ϕ

}
sin ϕ dϕ

=
[
−1

3
cos ϕ − 1

4
cos2 ϕ − 1

15
cos3 ϕ

]π
2

0

=
1
3

+
1
4

+
1
15

=
1
4

+
6
15

=
1
4

+
2
5

=
13
20

.

 Plane integrals, polar coordinates
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3 Area

Example 3.1 Let A be the plane point set which in polar coordinates is bounded by the inequalities

−π ≤ ϕ ≤ π, 0 ≤ � ≤ 1 + cos ϕ;

the boundary curve ∂A is a cardioid. Let B be the disc which is bounded by 0 ≤ � ≤ 1. Find the area
of the intersection A ∩ B.

A Area of a set given in polar coordinates.

D Sketch the boundary curves. Then set up the integrals of the area and compute.

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1 1.5 2

Figure 38: The intersection of the unit disc and the cardioid.

I By examining the figure we set up the formula of the area where we have a half disc in the right
half plane,

area(A ∩ B) =
1
2

π · 12 + 2
∫ π

π
2

{∫ 1+cos ϕ

0

� d�

}
dϕ =

π

2
+ 2

∫ π

π
2

1
2

(1 + cos ϕ)2 dϕ

=
π

2
+
∫ π

π
2

{
1 + 2 cos ϕ +

1
2

(1 + cos 2ϕ)
}

dϕ

=
π

2
+

3π

2
· 1
2

+ [2 sin ϕ]ππ
2

+
1
4

[sin 2ϕ]ππ
2

=
5π

4
− 2.

 Area
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Example 3.2 In each of the following cases a plane and bounded point set B is given by the boundary
curve ∂B given in polar coordinates. Sketch B and find the area of B.

1) The cardiod,

� = a(1 + cos ϕ), ϕ ∈ [−π, π].

2) (A part of) Descartes’s leaf,

� =
3a sin ϕ cos ϕ

sin3 ϕ + cos3 ϕ
, ϕ ∈

[
0,

π

2

]
.

3) (Part of) Maclaurin’s trisectrix,

� = 4a · cos ϕ − 1
cos ϕ

, ϕ ∈
[
−π

3
,
π

3

]
.

A Sketches of curves given in polar coordinates. Area by a plane integral.

D Sketch the boundary curve. Then apply the theorem of reduction.

–1

–0.5

0

0.5

1

0.5 1 1.5 2

Figure 39: The cardioid.

I 1) Cardioid, from Greek “η κα�δια = the heart”, because the curve has the shape of a heart.
The area is given by∫

B

dS =
∫ π

−π

{∫ a(1+cos ϕ)

0

� d�

}
dϕ =

∫ π

−π

1
2

a2(1 + cos ϕ)2 dϕ

=
1
2

a2

∫ π

−π

{
1 + 2 cos ϕ +

1 + cos 2ϕ

2

}
dϕ =

1
2

a2 · 3
2
· 2π =

3
2

a2π.

 Area
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Figure 40: Part of Descartes’s leaf.

2) The area is here computed in the following way

∫
B

dS =
∫ π

2
0

{∫ 3a sin ϕ cos ϕ

sin3 ϕ+cos3 ϕ

0

� d�

}
dϕ =

1
2

∫ π
2

0

9a2 · sin2 ϕ cos2 ϕ

(sin3 ϕ + cos3 ϕ)2
dϕ

=
9
2

a2

∫ π
2

0

tan2 ϕ · cos4 ϕ

cos6 ϕ(1 + tan3 ϕ)2
dϕ =

9a2

2

∫ +∞

u=tan ϕ=0

u2

(1 + u3)2
du

=
3
2

a2

[
− 1

1 + u3

]+∞

0

=
3
2

a2.

–1

–0.5

0

0.5

1

0.5 1 1.5 2 2.5 3

Figure 41: A part of Maclaurin’s trisectrix.

3) By the usual reduction the area is here computed in the following way,∫
B

dS =
∫ π

3

−π
3

1
2

{
a

cos ϕ
− 4a cos ϕ

}2

dϕ =
a2

2
· 2
∫ π

3

0

{
1

cos2 ϕ
− 8 + 8 + 8 cos 2ϕ

}
dϕ

= a2[tan t + 4 sin 2ϕ]
π
3
0 = a2

{
tan

π

3
+ 4 sin

2π

3

}
= a2

(√
3 + 4 ·

√
3

2

)
= 3

√
3 a2.

 Area
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Example 3.3 Find the area of the plane domain B, which is bounded by (i) a part of Archimedes’s
spiral given in polar coordinates by

� = aϕ, ϕ ∈ [0, π],

and (ii) the part of the negative X-axis given by

(y = 0 and x ∈ [−πa, 0]), or (ϕ = π and � ∈ [0, πa]).

A Area in polar coordinates.

D Sketch the domain; compute the area by reduction in polar coordinates.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

–3 –2.5 –2 –1.5 –1 –0.5 0.5

I The area is∫
B

dS =
∫ π

0

{∫ aϕ

0

� d�

}
dϕ =

∫ π

0

1
2

a2ϕ2 dϕ =
1
6

a2π3.

 Area
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4 Improper plane integral

Example 4.1 Check in each of the following cases if the given improper plane integral over the
bounded set B is convergent or divergent; indicate the value of the plane integral in case of con-
vergency.

1)
∫

B

x + 1√
x2 + y2

dS, where B is K((0, 0); 1).

2)
∫

B

ln(x + 2y)
x2

dS, where B is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ x

2
.

3)
∫

B

1
(1 − x)(1 + x + y)2

dS, where B is given by 0 ≤ x, 0 ≤ y, x + y ≤ 1.

4)
∫

B

1
x + y

dS, where B is [0, 1] × [0, 1].

5)
∫

B

1
x + y

dS, where B is given by 0 ≤ x ≤ 1 and x ≤ y ≤ √
1 + x2.

6)
∫

B

y

x2 + y2
dS, where B is given by 0 ≤ x ≤ 1 and x ≤ y ≤ √

1 + x2.

7)
∫

B

x2 − y2

(x2 + y2)2
dS, where B is K((0, 0); 1).

8)
∫

B

1√
1 − xy

dS, where B is [0, 1] × [0, 1].

9)
∫

B

1
x2 + y

dS, where B is given by 0 ≤ x ≤ 1, and x2 ≤ y ≤ x.

10)
∫

B
ln
(

1
x2 + y2

)
dS, where B is K((0, 0); 1).

11)
∫

B
ln(1 − x2 − y2) dS, where B is K((0, 0); 1).

12)
∫

B

1√
x + y − 1

dS, where B is the triangle of the vertices (1, 0), (1, 1) and (0, 1).

A Improper plane integrals.

D Sketch the domain. Indicate where the integrand is not defined. Then check where the function is
positive and where it is negative. Truncate in a suitable way and check if the limit exists. Notice
that if the integrand has the same sign everywhere in a dotted neighbourhood of a critical point,
then the truncation can be very simple, which does not have to be “small” in geometry (but of
course in area). If this is not the case one must be far more careful and split into the positive and
the negative part of the function.

I 1) The domain is the closed unit disc. The integrand is not defined at (0, 0), and it is otherwise
positive (or zero) in B \ {(0, 0)}.
Let Br = K((0, 0); 1)\K((0, 0); r), where 0 < r < 1. Then Br is described in polar coordinates
by

0 ≤ ϕ ≤ 2π, 0 < r ≤ � ≤ 1.

 Improper plane integral



Download free books at BookBooN.com

Calculus 2c-5

 

58  

–1

–0.5

0
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1

–1 –0.5 0.5 1

Figure 42: The truncation of Example 4.1.1.

Then by the theorem of reduction in polar coordinates followed by interchanging the order of
integration,∫

Br

x + 1√
x2 + y2

dS =
∫ 2π

0

{∫ 1

r

� cos ϕ + 1
�

� d�

}
dϕ =

∫ 1

r

{∫ 2π

0

(� cos ϕ + 1)dϕ

}
d�

= 2π

∫ 1

r

d� = 2π(1 − r),

 Improper plane integral
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which clearly has a limit for r → 0+, thus the improper plane integral exists and it has the
value∫

B

x + 1√
x2 + y2

dS = lim
r→0+

∫
Br

x + 1√
x2 + y2

dS = lim
r→0+

2π(1 − r) = 2π.

–0.2

0

0.2

0.4

0.6

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 43: The truncation of Example 4.1.2.

2) The integrand is not defined at (0, 0) ∈ B. Note that the integrand is negative elsewhere, i.e.

it has a fixed sign when (x, y) ∈ B and 0 < x <
1
2
. Thus we can choose the truncation

Bt = {(x, y) ∈ B | x ≥ t}, 0 < t <
1
2
.

We then get by integration over Bt,∫
Bt

ln(x + 2y)
x2

dS =
∫ 1

t

1
x2

{∫ x
2

0

ln(x + 2y) dy

}
dx =

∫ 1

t

1
2x2

{∫ x

0

ln(x + u)du

}
dx

=
∫ 1

t

1
2x2

[(x + u) ln(x + u) − (x + u)]xu=0dx

=
∫ 1

t

1
2x2

{3x ln(2x) − 2x − x lnx + x}dx =
∫ 1

t

1
2x2

{2x ln 2 + x lnx − x}dx

=
∫ 1

t

{
ln 2
x

− 1
2x

+
lnx

2x

}
dx = −1

2
(2 ln 2 − 1) ln t − 1

4
(ln t)2,

which tends to −∞ for t → 0+, and the improper integral does not exist.

3) The domain is the well-known triangle in the first quadrant. This time the integrand is not
defined at (1, 0) ∈ B. It is positive in the rest of B. We choose the truncation

Bt = {(x, y) ∈ B | x ≤ t}, 0 < t < 1.
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Figure 44: The truncation of Example 4.1.3.

Then by integration over Bt,∫
Bt

1
(1 + x + y)2

· 1
1 − x

dS =
∫ t

0

1
1 − x

{∫ 1−x

0

1
(1 + x + y)2

dy

}
dx

=
∫ t

0

1
1 − x

[
− 1

1 + x + y

]1−x

y=0

dx =
∫ t

0

1
1 − x

{
1

1 + x
− 1

2

}
dx

=
∫ t

0

{
1
2
· 1
1 − x

+
1
2
· 1
1 + x

− 1
2
· 1
1 − x

}
dx =

1
2
[ln(1 + x)]t0 =

1
2

ln(1 + t).

The improper plane integral exists and it has the value∫
B

1
(1 + x + y)2

· 1
1 − x

dS = lim
t→1−

∫
Bt

1
(1 + x + y)2

· 1
1 − x

dS = lim
t→1−

1
2

ln(1 + t) =
1
2

ln 2.
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Figure 45: The truncation of Example 4.1.4.

4) The domain is the unit square. The integrand is not defined at (0, 0), and it is positive in the
rest of B. We can therefore choose the geometrical rather “large” truncation

Bt = {(x, y) ∈ B | x ≥ t}, 0 < t < 1.
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The essential here is that the area of the removed domain tends to 0 for t → 0+.

We get by integration over Bt,∫
Bt

1
x + y

dS =
∫ 1

t

{∫ 1

0

1
x + y

dy

}
dx =

∫ 1

t

{ln(1 + x) − lnx}dx

= [(x + 1) ln(1 + x) − x − x ln x + x]1t = 2 ln 2 − (t + 1) ln(t + 1) + t ln t.

Due to the rules of magnitudes, t ln t → 0 for t → 0+. Hence the improper plane integral exists,
and it has the value∫

B

1
x + y

dS = lim
t→0+

∫
Bt

1
x + y

dS = lim
t→0+

{2 ln 2 − (t + 1) ln(1 + t) + t ln t} = 2 ln 2.
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Figure 46: The truncation of Example 4.1.5 and of Example 4.1.6.

5) We consider the same integrand (and the same singularity) as in Example 4.1.4. We can
therefore choose the truncation

Bt = {(x, y) | t ≤ x ≤ 1, x ≤ y ≤
√

1 + x2}, 0 < t < 1,

where we remove a strip along the Y -axis. Then by integrating over Bt,∫
Bt

1
x + y

dS =
∫ 1

t

{∫ √
1+x2

x

1
x + y

dy

}
dx =

∫ 1

t

{ln(x +
√

1 + x2) − ln 2 − lnx}dx

=
[
x ln(x +

√
1 + x2)

]1
t
−
∫ 1

t

x√
1 + x2

dx − [ln 2 · x + x lnx − x]1t

= ln 2 − t ln(t +
√

1 + t2) −
[√

1 + t2
]1

t
+ (1 − ln 2) · (1 − t) − t ln t

= 1 −
√

2 +
√

1 + t2 − t ln(t +
√

1 + t2) − t ln t − t(1 − ln 2).

Due to the rules of magnitudes, t · ln t → 0− for t → 0+, so we conclude that the improper
plane integral exists and it has the value∫

B

1
x + y

dS = lim
t→0+

∫
Bt

1
x + y

dS = 2 −
√

2.
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6) The domain is the same as in Example 4.1.5, and the integrand is not defined at (0, 0). The
integrand is positive elsewhere, so we can choose the same truncation as in Example 4.1.5.
Thus,

Bt = {(x, y) | t ≤ x ≤ 1, x ≤ y ≤
√

1 + x2}, 0 < t < 1.

Then∫
Bt

y

x2 + y2
dS =

∫ 1

t

{∫ √
1+x2

x

y

x2 + y2
dy

}
dx =

∫ 1

t

[
1
2

ln(x2 + y2)
]√1+x2

y=x

dx

=
1
2

∫ 1

t

{ln(1 + 2x2) − ln 2 − 2 ln x}dx

=
1
2
[
x ln(1 + 2x2)

]1
t
− 1

2

∫ 1

t

4x2

1 + 2x2
dx − 1

2
ln 2 · (1 − t) − [x lnx − x]1t

=
1
2

ln 3 − 1
2

t ln(1 + 2t2) −
∫ 1

t

2x2 + 1 − 1
1 + 2x2

dx − 1
2

ln 2 · (1 − t) + 1 + t ln t − t

=
1
2

ln
3
2

+ 1 − 1
2

t ln(1 + 2t2) +
1
2

ln 2 · t + t ln t − t − 1 + t +
[

1√
2

Arctan(
√

2x)
]1

t

=
1
2

ln
3
2

+
1√
2

Arctan
√

2 − 1
2

t ln(1 + 2t2) +
1
2

ln 2 · t + t · ln t − 1√
2

Arctan(
√

2t).
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It follows by taking the limit that the improper plane integral exists and that it has the value∫
B

y

x2 + y2
dS = lim

t→0+

∫
Bt

y

x2 + y2
dS =

1
2

ln
3
2

+
1√
2

Arctan
√

2.
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Figure 47: A subdomain with truncation in Example 4.1.7.

7) This is a vicious example which is constructed to mislead the reader to an erroneous conclusion.

The domain is the closed unit disc. The integrand is not defined at (0, 0). The integrand is
both positive and negative in any dotted neighbourhood of (0, 0), so we shall split it into a
positive part and a negative part! We shall here only consider the truncated quarter disc

Br =
{

(�, ϕ)
∣∣∣ −π

4
≤ ϕ ≤ π

4
, r ≤ � ≤ 1

}
, 0 < r < 1,

where the integrand is nonnegative. Then by a reduction in polar coordinates,∫
Br

x2 − y2

(x2 + y2)2
dS =

∫ π
4

−π
4

{∫ 1

r

�2 cos 2ϕ

�4
� d�

}
dϕ =

[
1
2

sin 2ϕ

]π
4

−π
4

· [ln �]1r

= ln
1
r
→ +∞ for r → 0+,

so the improper plane integral does not exist.

Warning. The careless reader may give the following solution: Choose the truncation

B′
r = {(�, ϕ) | 0 ≤ ϕ ≤ 2π, r ≤ � ≤ 1}, 0 < r < 1.

Then we have the following correct computation,∫
B′

r

x2 − y2

(x2 + y2)2
dS =

∫ 2π

0

cos 2ϕdϕ ·
∫ 1

r

d�

�
= 0,

for every r ∈ ]0, 1[.

 Improper plane integral



Download free books at BookBooN.com

Calculus 2c-5

 

64  

However, by taking the limit we only get what may be called the principal value,

vp.
∫

B

x2 − y2

(x2 + y2)2
dS = lim

r→0+

∫
B′

r

x2 − y2

(x2 + y2)2
dS = 0.

The improper plane integral does not exist as proved above, but the principal value does. In
some cases one may even give this a physical interpretation. We shall, however, not pursue this
aspect here. ♦
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Figure 48: The truncation of Example 4.1.8.

8) The domain is the unit square, and the singular point is (1, 1). The integrand is positive
elsewhere, so we may choose the truncation

Bt = {(x, y) | 0 ≤ x ≤ t, 0 ≤ y ≤ 1}, 0 < t < 1.

Then∫
Bt

1√
1 − xy

dS =
∫ t

0

{∫ 1

0

1√
1 − xy

dy

}
dx =

∫ t

0

[
− 2

x

√
1 − xy

]1

y=0

dx

=
∫ t

0

2
x
{1 −√

1 − x}dx =
∫ t

0

2
1 +

√
1 − x

dx,

which clearly has a limit for t → 1−, because the latter integrand is continuous in all of [0, 1].
Hence the improper integral exists. By introducing the substitution

u =
√

1 − x, x = 1 − u2,

we finally obtain the value∫
B

1√
1 − xy

dS =
∫ 1

0

2
1 +

√
1 − x

dx = −
∫ 0

1

4u

1 + u
du

=
∫ 1

0

{
4 − 4

1 + u

}
du = 4 − 4 ln 2.

9) The domain is bounded by the parabola y = x2 and the line y = x. The integrand is not
defined at (0, 0), and it is positive elsewhere in B. Choose the truncation

Bt = {(x, y) | t ≤ x ≤ 1, x2 ≤ y ≤ x}, 0 < t < 1.
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Figure 49: The truncation of Example 4.1.9.

Then∫
Bt

1
x2 + y

dS =
∫ 1

t

{∫ x

x2

1
x2 + y

dy

}
dx =

∫ 1

t

[
ln(x2 + y)

]x
y=x2 dx

=
∫ 1

t

{ln(x2 + x) − ln(2x2)} dx =
∫ 1

t

{lnx + ln(1 + x) − ln 2 − 2 lnx} dx

=
∫ 1

t

{ln(1+x)−ln x−ln 2} dx = [(1+ x) ln(1+x)−x−x ln x+x−ln 2 · x]1t

= 2 ln 2 − ln 2 − (1 + t) ln(1 + t) + t ln t + ln 2 · t.
This expression has a limit for t → 0+, so we conclude that the improper plane integral exists
and its value is given by∫

B

1
x2 + y

dS = lim
t→0+

∫
Bt

1
x2 + y

dS = ln 2.
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Figure 50: The truncation of Example 4.1.10.

10) The domain is the closed unit disc, where the integrand is not defined at (0, 0). The integrand
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is otherwise positive. Choose the truncation

Br = {(�, ϕ) | 0 ≤ ϕ ≤ 2π, r ≤ � ≤ 1}, 0 < r < 1.

Then∫
Br

ln
(

1
x2 + y2

)
dS =

∫ 2π

0

{∫ 1

r

− ln(�2)� d�

}
dϕ = 2π

[
1
2
{−�2 ln(�2) + �2

}]1

r

= π + πr2 ln(r2) − r2.

The improper plane integral exists and its value is∫
B

ln
(

1
x2 + y2

)
dS = lim

r→0+

∫
Br

ln
(

1
x2 + y2

)
dS = π.
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Figure 51: The truncation of Example 4.1.11.

11) The domain is again the closed unit disc. Here the integrand is only defined in the open unit
disc, where it is ≤ 0 (fixed sign). Therefore we can choose the truncation in polar coordinates

Br = {(�, ϕ) | 0 ≤ ϕ ≤ 2π, 0 ≤ � ≤ r}, 0 < r < 1.

Then∫
Br

ln(1 − x2 − y2) dS =
∫ 2π

0

{∫ r

0

ln(1 − �2) · � d�

}
dϕ

= 2π

∫ r

�=0

{
−1

2
ln(1 − �2)

}
d(1 − �2)

= −π
[
(1 − �2) ln(1 − �2) − (1 − �2)

]r
0

= −π{(1 − r2) ln(1 − r2) − (1 − r2) + 1}.
This expression has a limit for 1 − r2 → 0+. We conclude that the improper plane integral
exists and it has the value∫

B

ln(1 − x2 − y2) dS = lim
r→1−

∫
Br

ln(1 − x2 − y2) dS = −π.

12) The integrand is positive everywhere in the interior of B. It tends to +∞, when we are
approaching the line x + y = 1 from above. Choose the truncation

Bt = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≥ t + 1}, 0 < t < 1.

Then∫
Bt

1√
x + y − 1

dS =
∫ 1

t

{∫ 1

1−y+t

dx√
x + y − 1

}
dy = 2

∫ 1

t

[√
x + y − 1

]1
x=1−y+t

dy

= 2
∫ 1

t

{√
y −√

t
}

dy = 2
[
2
3

y
√

y − y
√

t

]1

x=1−y+t

= 2
{

2
3
−√

t − 2
3

t
√

t + t
√

t

}
→ 4

3
for t → 0+. We conclude that the improper plane integral is convergent with the value∫

B

1√
x + y − 1

dS = lim
t→0+

∫
Bt

1√
x + y − 1

dS =
4
3
.
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Figure 52: The truncation of Example 4.1.12.

Example 4.2 Check in each of the following cases if the given improper plane integral over the un-
bounded point set B is convergent or divergent. In case of convergency find the value of the plane
integral.

1)
∫

B

y

x2 + x
dS, where B is given by x ≥ 1 and x ≤ y ≤ √

x2 + 1.

2)
∫

B

1
x + y

dS, where B is given by x ≥ 1 and
1
x
≤ y ≤ x.

3)
∫

B

y

(1 + x2 + y2)2
dS, where B is given by y ≥ 0.

4)
∫

B
ln(x2 + y2) dS, where B is given by x2 + y2 ≥ 1

4
.

5)
∫

B
xy exp(−x2 − y2) dS, where B = R

2.

6)
∫

B
xy dS, where B = R

2.

7)
∫

B
x exp(−(x + y)) dS, where B is given by 0 ≤ x < +∞ and x ≤ y.

8)
∫

B
exp(−|x| − y) dS, where B is given by −∞ < x < +∞ and y > |x|.

9)
∫

B
x2 exp(−yx2 − x) dS, where B is given by x ≥ 1 and 0 ≤ y ≤ 1

x
.

10)
∫

B

y2

1 + x2
dS, where B is given by 0 ≤ x < +∞ and 0 ≤ y ≤ Arctan x.

11)
∫

B

x

y(1 + x2)
dS, where B is given by 1 ≤ y < +∞ and 0 ≤ x ≤ √

y − 1.

12)
∫

B

1√
x + y − 1

dS, where B is the triangle of the vertices (1, 0), (1, 1) and (0, 1).

A Improper plane integrals where the integrand is continuous and the domain is unbounded.

Note that Example 4.2.12 is not at the right place, because the domain in this example is
bounded, while the integrand is unbounded. For the same reason it is also given as Exam-
ple 4.1.12.
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D The integrands are defined in the given unbounded domains (sketch these). If the integrand is
of fixed sign for x2 + y2 sufficiently large, we may choose an easy truncation. However, if the
integrand is both positive and negative when x2 + y2 tends to infinity, we shall be more careful in
our choice of truncation. At last check the limit x2 + y2 → +∞.

 Improper plane integral
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Figure 53: The truncation of Example 4.2.1.

I 1) The integrand is positive in all of the domain B, which lies in the first quadrant. We choose the
truncation

Bt = {(x, y) | 1 ≤ x ≤ t, x ≤ y ≤
√

x2 + 1}, for t > 1.

Then∫
Bt

y

x2 + x
dS =

∫ t

1

1
x(x + 1)

{∫ √
x2+1

x

y dy

}
dx =

∫ t

1

1
x(x + 1)

[
1
2

y2

]√x2+1

y=x

dy

=
1
2

∫ t

1

{
1
x
− 1

x + 1

}
dx =

1
2

[
ln
(

x

x + 1

)]t

1

=
1
2

ln 2 − 1
2

ln
(

1 +
1
t

)
.

We conclude by taking the limit that the improper plane integral exists and that its value is
given by∫

y

x2 + x
dS = lim

t→+∞

∫
Bt

y

x2 + x
dS =

1
2

ln 2.

2) The integrand is positive in all of the domain. We choose the truncation

Bt =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ t,

1
x
≤ y ≤ x

}
, t > 1.
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Figure 54: The truncation of Example 4.2.2.

When we integrate over Bt we get∫
Bt

1
x + y

dS =
∫ t

1

{∫ x

1
x

1
x + y

dy

}
dx =

∫ t

1

[ln(x + y)]xy= 1
x
dx

=
∫ t

1

{
ln(2x) − ln

(
x +

1
x

)}
dx =

∫ t

1

{ln 2 + 2 lnx − ln(1 + x2)} dx

= ln 2 · (t − 1) + 2[x ln x − x]t1 −
[
x ln(1 + x2)

]t
1

+ 2
∫ t

1

x2

1 + x2
dx

= ln 2 · (t − 1) + 2t ln t − 2t + 2 − t ln(1 + t2)

+ ln 2 + 2
∫ t

1

(
1 − 1

1 + x2

)
dx

= 2 + t · ln 2 + 2t ln t − 2t − t ln(1 + t2) + 2t − 2 − 2[Arctan x]t1

= t · ln 2 − t · ln
(

1 +
1
t2

)
− 2Arctan t +

π

2
.

Here

Arctan t → π

2
og t ln

(
1 +

1
t2

)
= t

(
1
t2

+
1
t2

ε

(
1
t

))
→ 0

for t → +∞, while t · ln 2 → +∞. Hence we conclude that the improper integral does not exist.

3) In this case the domain of integration is the upper half plane, and the integrand is ≥ 0 every-
where. Choose the truncation

Bs,t = {(x, y) | −s ≤ x ≤ s, 0 ≤ y ≤ t}, s, t > 0.
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Figure 55: Example of a truncation in Example 4.2.3.

Then∫
Bs,t

y

(1 + x2 + y2)2
dS =

∫ s

−s

{∫ t

0

y

(1 + x2 + y2)2
dy

}
= 2 · 1

2

∫ s

0

[
− 1

1 + x2 + y2

]t

y=0

dx

=
∫ s

0

{
1

1 + x2
− 1

(1 + t2) + x2

}
dx =

[
Arctan x − 1√

1 + t2
Arctan

(
x√

1 + t2

)]s

0

= Arctan s − 1√
1 + t2

Arctan
(

s√
1 + t2

)
.

Here Arctan
(

s√
1 + t2

)
is bounded, so we conclude that the improper plane integral exists and

it has the value∫
B

y

(1 + x2 + y2)2
dS = lim

s→+∞ lim
t→+∞

∫
Bs,t

y

(1 + x2 + y2)2
dS = lim

s→+∞ Arctan s =
π

2
.
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0
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3
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Figure 56: The truncation of Example 4.2.4.

4) The domain is the complementary set of a disc, and the integrand is positive for x2 + y2 > 1.
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We choose the following truncation (in polar coordinates)

Br =
{

(�, ϕ)
∣∣∣∣ 0 ≤ ϕ ≤ 2π,

1
2
≤ � ≤ r

}
, r > 1.

Then∫
Br

ln(x2 + y2) dS =
∫ 2π

0

{∫ r

1
2

ln(�2) · � d�

}
dϕ = 2π

[
1
2
(
�2 ln(�2) − �2

)]2

1
2

= π

{
r2 ln(r2) − r2 − 1

4
ln

1
4

+
1
4

}
→ +∞,

for x → +∞, so the improper integral does not exist.

5) This is another vicious example. The point is that we can separate the variables, so (roughly
speaking)∫

B

xy exp(−x2 − y2) dS =
∫ +∞

−∞
x exp(−x2) dx ·

∫ +∞

−∞
y exp(−y2) dy

=
{∫ +∞

−∞
t exp(−t2) dt

}2

.
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Since∫ ∞

−∞
t exp(−t2) dt =

∫ 0

−∞
t exp(−t2) dt +

∫ +∞

0

t exp(−t2) dt,

where e.g.

∫ +∞

0

t exp(−t2) dt =
[
−1

2
exp(−t2)

]+∞

0

=
1
2
,

and similarly over the negative X-axis, the improper integral exists an it follows by the sym-
metry that∫

B

xy exp(−x2 − y2) dS = 0.

Remark. Note that we must argue of the convergency of the improper integral, otherwise the
treatment of the example is not correct, even if one formally obtains the correct result 0. ♦

6) If we restrict the truncation B+
n = [0, n]× [0, n] only to the first quadrant, then clearly xy ≥ 0

on B+
n . The integral over B+

n ,

∫
B+

n

xy dS =
∫ n

0

x dx ·
∫ n

0

y dy =
(

n2

2

)2

=
n4

4
,

tends to +∞ for n → +∞. Hence it follows that the improper plane integral is divergent.

Remark. Notice that if one e.g uses the pocket calculator TI-92 with the command

limit(
∫

(
∫

(x ∗ y, x,−n, n), y,−n, n), n,∞),

then one gets the wrong result 0. In this case one cannot trust one’s pocket calculator! ♦
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Figure 57: The truncated triangle of Example 4.2.7.

7) The integrand is positive everywhere, so we can use the truncation

Bt = {(x, y) | 0 ≤ y ≤ t, 0 ≤ x ≤ y}, t > 0.
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The by integration,∫
Bt

x exp(−(x + y)) dS =
∫ t

0

{∫ y

0

xe−xe−y dx

}
dy =

∫ t

0

e−y

{∫ y

0

xe−x dx

}
dy

=
∫ t

0

e−y
[−xe−x − e−x

]y
x=0

dy =
∫ t

0

e−y
{−ye−y − e−y + 1

}
dy

=
∫ t

0

{
e−y − e−2y − ye−2y

}
dy =

[
−e−y +

1
2

e−2y +
1
2

ye−2y +
1
4

e−2y

]t

0

= 1 − 1
2
− 1

4
− e−t − 3

4
e−2t − 1

2
te−2t =

1
4
− e−t

{
1 +

3
4

e−t +
1
2

te−t

}
.

We conclude by taking the limit t → +∞ that the improper integral exists and its value is
given by∫

B

x exp(−(x + y)) dS = lim
t→+∞

∫
Bt

x exp(−(x + y)) dS =
1
4
.
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Figure 58: The truncated triangle of Example 4.2.8.

8) The integrand is positive in the domain of integration, so we can choose the truncation

Bt = {(x, y) | |x| < y ≤ t}, t > 0.

Then by integration over Bt,∫
Bt

exp(−|x| − y) dS =
∫ t

0

{∫ y

−y

e−|x|e−y dx

}
dy = 2

∫ t

0

e−y

{∫ y

0

e−x dx

}
dy

= 2
∫ t

0

e−y(1 − e−y) dy = 2
∫ t

0

(e−t − e−2y) dy

= 2(1 − e−t) − (1 − e−2t) = 1 − 2e−t + e−2t.

Taking the limit t → +∞ we conclude that the improper plane integral exists and that its
value is∫

B

exp(−|x| − y) dS = lim
t→+∞

∫
Bt

exp(−|x| − y) dS = 1.
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Figure 59: The truncation of Example 4.2.9.

9) The integrand is defined and ≥ 0 all over R
2. We can choose the truncation

Bt =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ t, 0 ≤ y ≤ 1

x

}
, t > 1.

Then by the theorem of reduction for t > 1,∫
Bt

x2 exp(−yx2 − x) dS =
∫ t

1

{∫ 1
x

0

x2 exp(−yx2) e−xdy

}
dx

=
∫ t

1

e−x

{∫ 1
x

0

exp(−yx2)x2 dy

}
dx =

∫ t

1

e−x
[− exp(−yx2)

] 1
x

y=0
dx

=
∫ t

1

e−x(1 − e−x) dx =
∫ t

1

(e−x − e−2x) dx =
[
−e−x +

1
2

e−2x

]t

1

=
1
e
− 1

2e2
− e−t +

1
2

e−2t.

Taking the limit t → +∞ we get

lim
t→+∞

∫
Bt

x2 exp(−yx2 − x) dS =
1
e
− 1

2e2
=

2e − 1
2e2

,

so we conclude that the improper plane integral is convergent with the value∫
B

x2 exp(−yx2 − x) dS =
2e − 1
2e2

.

10) The integrand is positive everywhere in the unbounded domain. If we choose the truncation

Bt = {(x, y) | 0 ≤ x ≤ t, 0 ≤ y ≤ Arctan x}, t > 0,

we get the integral∫
Bt

y2

1 + x2
dS =

∫ t

0

1
1 + x2

{∫ Arctan x

0

y2 dy

}
dx =

1
3

∫ t

0

{Arctanx}3

1 + x2
dx

=
1
12

{Arctan t}4 → 1
12

·
(π

2

)4

=
π4

192
,
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Figure 60: The truncation of the domain of Example 4.2.10.

and the improper plane integral is convergent with the value∫
B

y2

1 + x2
dS = lim

t→+∞

∫
Bt

y2

1 + x2
dS =

π4

192
.
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Figure 61: The truncation of Example 4.2.11.

11) The integrand is positive everywhere in the open and unbounded domain. We choose the
truncation

Bt = {(x, y) | 1 ≤ y ≤ t, 0 ≤ x ≤
√

y − 1},

so ∫
Bt

x

y(1 + x2)
dS =

∫ t

1

1
y

{∫ √
y−1

0

x

1 + x2
dx

}
dy =

1
2

∫ t

1

1
y

[
ln(1 + x2)

]√y−1

0
dy

=
1
2

∫ t

1

1
y

ln y dy =
1
4
{ln t}2 → +∞

for t → +∞. We conclude that the improper plane integral is divergent.
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Example 4.3 There is in each of the following cases given a plane integral, in which there enters a
parameter α ∈ R. The integral is improper for some or every value of the parameter α. Let MC and
MD = R \ MC be sets of real numbers, such that the integral is convergent (or proper) for α ∈ MC

and divergent for α ∈ MD. Find in each of the cases MC and MD and the value of the integral for
α ∈ MC .

1)
∫

B

ln(x2 + y2)(√
x2 + y2

)α dS, where B = K((0, 0); e).

2)
∫

B(α)
xy dS, where B(α) = {(x, y) | 1 ≤ x < +∞, 0 ≤ y ≤ x−α}.

3)
∫

B
yα dS, where B =

{
(x, y)

∣∣∣∣ 1 ≤ x < +∞,
1
x2

≤ y ≤ 1
x

}
.

4)
∫

B(α)

1
x

dS, where B(α) = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x|α|}.

5)
∫

B
yα dS, where B =

{
(x, y)

∣∣∣∣ 1 ≤ x < +∞,
1
x
≤ y ≤ 2

x

}
.

6)
∫

B
exp(−α(x2 + y2)) dS, where B = R

2.

7)
∫

B
(1 − cos(αxy)) dS, where B = R × [0, 1].

A Improper plane integrals.

D Sketch the domain. Analyze where “there is something wrong”. This happens typically when

1) the integrand is not defined,

2) the domain is unbounded,

but it may principally also be of another kind.

Calculate the following improper plane integrals, and find MC . The the rest follows easily.
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0

1

2

–2 –1 1 2

Figure 62: The truncated domain of Example 4.3.1.
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I 1) The domain is the closed disc of centrum (0, 0) and radius e. The integrand is not defined at
(0, 0). It is negative in every dotted neighbourhood of (0, 0) of radius < 1. Since the positive
part, corresponding to 1 < � ≤ e, is finite, we may use the truncation

Br = {(�, ϕ) | 0 ≤ ϕ ≤ 2π, r ≤ � ≤ e}, 0 < r < e.

In the computation of the following plane integral over Br, we use a reduction in polar coordi-
nates and the substitution u = ln �. Then∫

Br

ln(x2 + y2)(√
x2 + y2

)α dS =
∫ 2π

0

{∫ e

r

ln(�2)
�α

· � d�

}
dϕ = 4π

∫ e

r

ln �

�α−2
· 1
�

d�

= 4π

∫ 1

ln r

u · e(2−α)u du.

As ln r → −∞ for r → 0+, and as the integrand is monotonous for

u < min
{

0,
1

α − 2

}
,

 Improper plane integral
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we must at least require that the integrand tends to 0 for u → −∞, which according to the
rules of magnitudes gives the condition 2 − α > 0. We conclude that

MC ⊆ ] −∞, 2[.

Then let α < 2. It follows from (2) that∫
Br

ln(x2 + y2)(√
x2 + y2

)α dS = 4π

∫ 1

ln r

u · e2−α)u du = 4π

[
1

2 − α
u e(2−α)u − 1

(2 − α)2
e(2−α)u

]1

ln r

= 4π

{
(2 − α) − 1
(2 − α)2

e2−α − 1
2 − α

r2−α ln r − 1
(2 − α)2

r2−α

}
.

Using the rules of magnitudes once more we see that this expression converges for r → 0+,
hence

MC = ] −∞, 2[ og MD = [2,+∞[.

When α ∈ MC = ] −∞, 2], we get the value of the improper plane integral∫
B

ln(x2 + y2)

(
√

x2 + y2)α
dS = lim

r→0+

∫
Br

ln(x2 + y2)

(
√

x2 + y2)α
dS = 4π · 1 − α

(2 − α)2
e2−α.
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Figure 63: The truncated domain of Example 4.3.2 for α = 1.

2) The domain is unbounded. Since xy ≥ 0 in B(α), we consider the truncation

Bt(α) = {(x, y) | 1 ≤ x ≤ t, 0 ≤ y ≤ x−α}, 1 < t < +∞.

The corresponding plane integral is

∫
Bt(α)

xy dS =
∫ t

1

{∫ x−α

0

xy dy

}
dx =

1
2

∫ t

1

x1−2α dx.

It is well-known that this integral converges for t → +∞, if and only if 1− 2α < −1, i.e. if and
only if α > 1. It follows that

MC = ]1,+∞[ and MD = ] −∞, 1].
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For α ∈ MC , i.e. for α > 1,∫
B(α)

xy dS = lim
t→+∞

∫
Bt(α)

xy dS = lim
t→+∞

[
x2−2α

2(2 − 2α)

]t

1

=
1

4(α − 1)
.
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Figure 64: The truncation of Example 4.3.3.

3) In this case α enters the integrand and the domain is unbounded. The integrand is positive in
B, so we can choose the truncation

Bt =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ t,

1
x2

≤ y ≤ 1
x

}
, t > 1.

When α �= 1 we get∫
Bt

yα dS =
∫ t

1

{∫ 1
x

1
x2

yα dy

}
dx =

∫ t

1

[
1

α + 1
yα+1

] 1
x

y= 1
x2

dx

=
1

α + 1

∫ t

1

{
x−α−1 − x−2α−2

}
dx.

Furthermore, if α �= 0 and α �= −1
2
, then∫

Bt

yα dS =
1

α + 1

[
− 1

α
x−α +

1
2α + 1

x−2α−1

]t

1

=
1

α + 1

{
1
α
− 1

2α + 1

}
+

1
α + 1

{
− 1

α
· 1
tα

+
1

2α + 1
· 1
t2α+1

}
.

This expression converges for t → +∞, if and only if α > 0 (as α �= 0 was assumed in advance)
and 2α + 1 > 0, i.e. if and only if α > 0. In this case,∫

B

yα dS = lim
t→+∞

∫
Bt

yα dS =
1

α + 1

{
1
α
− 1

2α + 1

}
=

2α + 1 − α

α(α + 1)(2α + 1)
=

1
α(2α + 1)

.

In the exceptional case α = 0,∫
Bt

yα dS =
∫

Bt

dS =
∫ t

1

{∫ 1
x

1
x2

dy

}
dx =

∫ t

1

{
1
x
− 1

x2

}
dx =

[
lnx +

1
x

]t

1

= ln t +
1
t
− 1 → +∞, t → +∞.
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We get in the other two exceptional cases α = −1 and α = −1
2
,

yα ≥ y0 = 1,

because 0 < y < 1 in B. Since already the case α = 0 is divergent, we conclude that we have
divergence in all three exceptional cases α = −1, − 1

2 and 0.

Summarizing,

MC = ]0,+∞[ and MD = ] −∞, 0].

If α ∈ MC , i.e. α > 0, then the value of the improper plane integral is∫
B

yα dS =
1

α(2α + 1)
.

 Improper plane integral
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Figure 65: The truncation of Example 4.3.4 in case of α = ±2.

4) The domain is bounded for all α ∈ R. The integrand is positive in B(α) \ {(0, 0)} and it is not
defined at (0, 0). Therefore, we can choose the truncation

Bt(α) = {(x, y) | t ≤ x ≤ 1, 0 ≤ y ≤ x|α|}, 0 < t < 1.

Then by a computation,

∫
Bt(α)

1
x

dS =
∫ 1

t

{∫
= 0x|α| 1

x
dy

}
dx =

∫ 1

t

x|α|−1 dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
1
t
, for α = 0,

1
|α| (1 − t|α|), for α �= 0.

When we take the limit t → + we see that this is divergent for α = 0 and convergent for α �= 0.
Then it follows that

MC = R \ {0} and MD = {0}.
We have for α ∈ MC , i.e. for α �= 0,∫

B(α)

1
x

dS = lim
t→0+

∫
Bt(α)

1
x

dS = lim
t→0+

1
|α| (1 − t|α|) =

1
|α| .

5) Here B is unbounded and the integrand is defined and positive in B. Choosing the truncation

Bt =
{

(x, y)
∣∣∣∣ 1 ≤ x ≤ t,

1
x
≤ y ≤ 2

x

}
, t > 1,

it follows by the theorem of reduction that the integral over Bt is given by

∫
Bt

yα dS =
∫ t

1

{∫ 2
x

1
x

yα dy

}
dx.

We get in particular for α = −1,

∫
Bt

y−1 dS =
∫ t

1

{∫ 2
x

1
x

1
y

dy

}
dx =

∫ t

1

(
ln

1
x
− ln

1
x

)
dx = (t − 1) ln 2,
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Figure 66: The truncation of Example 4.3.5.

which is divergent for t → +∞, hence α = −1 ∈ MD.

If α �= −1, then we get instead

∫
Bt

yα dS =
∫ t

1

{∫ 2
x

1
x

yα dy

}
dx =

∫ t

1

1
α + 1

[
yα+1

] 2
x
1
x

dx =
2α+1 − 1

α + 1

∫ t

1

x−α−1 dx.

If α = 0, then in particular∫
Bt

dS =
1

0 + 1
(
20+1 − 1

) ∫ t

1

1
x

dx = ln t,

which is divergent for t → +∞, hence α = 0 ∈ MD.

If α �= −1 and α �= 0, then∫
Bt

yα dS =
2α − 1
α + 1

∫ t

1

x−α−1 dx =
2α+1 − 1
α(α + 1)

(1 − t−α).

When t → +∞, this is divergent for α < 0 and convergent for α > 0.

Summarizing we see that MD = R \ R+ and MC = R+.

If α ∈ MC = R+, then we get the value of the improper plane integral∫
B

yα dS = lim
t→+∞

∫
Bt

yα dS =
2α+1 − 1
α(α + 1)

, α > 0.

6) When α < 0, the integrand tends to +∞ for
√

x2 + y2 → +∞, and when α = 0, the integrand
is a constant = 1. It follows that the improper integral is divergent for α ≤ 0.

Let α > 0. Then the integrand is > 0 everywhere. By choosing the truncation

Bt = {(x, y) | x2 + y2 ≤ t2} = B[0, t], t > 0,
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and using polar coordinates and the change of variables u = �2 we get∫
Bt

exp(−α(x2 + y2)) dS = 2π

∫ t

0

exp(−α�2) · � d�

= π

∫ t2

0

e−αu du =
π

α

{
1 − exp(−αt2)

}→ π

α
for t → +∞.

We conclude that

MC = ]0,+∞[ and MD = ] −∞, 0].

If α ∈ MC , i.e. α > 0, then∫
R2

exp(−α(x2 + y2)) dS =
π

α
.

7) If α = 0, the integrand is 0, so the improper plane integral is convergent for α = 0 ∈ MC . As
cos(−αxy) = cos(αxy) we may in the following restrict ourselves to α > 0. The integrand is
≥ 0 everywhere, so it suffices with the truncation

Bt = [−t, t] × [0, 1], t > 0.

 Improper plane integral
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Then∫
Bt

{1 − cos(αxy)) dS = 2t −
∫ t

−t

{∫ 1

0

cos(αxy) dy

}
dx = 2t −

∫ t

−t

[
sin(αxy)

αx

]1

0

dx

= 2t − 2
∫ t

0

sin(αxy)
αx

dx = 2t − 2
α

∫ t
α

0

sinx

x
dx.

Note that if t > πα, then∣∣∣∣∣
∫ t

α

0

sin x

x
dx

∣∣∣∣∣ ≤
∫ π

0

sinx

x
dx <

∫ π

0

1 dx = π,

hence∫
Bt

(1 − cos(αxy)) dS ≥ 2t − 2π

α
→ +∞ for t → +∞

for every α > 0, and thus also for every α < 0. We conclude that

MC = {0} and MD = R \ {0},

and that∫
B

(1 − cos(αxy)) dS = 0 for α = 0.

Example 4.4 Let B = {(x, y) | 0 ≤ x ≤ y ≤ 1}, and let

f(x, y) =
1

1 − x
.

Compute the plane integrals∫
B

y f(x, y) dS and
∫

B

y2 f(x, y) dS.

Which order of integration will give the shortest calculations?

A Improper plane integrals.

D Sketch the domain. Truncate it. Set up the double integrals and compute. Finally, take the limits.

I The domain B can be described in two ways,

B = {(x, y) | 0 ≤ x ≤ 1, x ≤ y ≤ 1} = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

The integrand is not defined at the point (1, 1) ∈ B. It is positive in the rest of B. We have (at
least) two possibilities of truncation,

Bt = {(x, y) | 0 ≤ x ≤ t, x ≤ y ≤ 1} 0 < t < 1,

 Improper plane integral
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Figure 67: The domain with two possible truncations.

and

B∗
t = {(x, y) | 0 ≤ y ≤ t, 0 ≤ x ≤ y}, 0 < t < 1.

Formally we have the following two possibilities for the improper double integrals,

(2)
∫

B

y f(x, y) dS =
∫ 1

0

1
1 − x

{∫ 1−

x

y dy

}
dx =

∫ 1−

0

y

{∫ y

0

1
1 − x

dx

}
dy.

By the computation we shall strictly speaking apply the truncation Bt in the first double integral,
and the truncation B∗

t in the second one. However, if we write 1− in the bound of integration
we indicate that the integral is calculated by taking a limit. The integrand is positive where it is
defined, so the only thing which may go wrong is that the value of (2) becomes +∞, which will
immediately be seen. Therefore, we shall allow ourselves to be careless in the following and only
write 1− instead of t with limt→1− in front of the integral.

When we consider the two possible double integrals of (2), the former one looks like the easiest
one. Of course the same order of integrations in the double integral, when y is replaced by y2,

because it is the integral
∫ y

0

1
1 − x

dx = − ln(1 − y), which is troublesome in the computations of

the y-integral. We shall below demonstrate both possibilities.

1) The easy double integral:∫ 1−

0

1
1 − x

{∫ 1

x

y dy

}
dx =

1
2

∫ 1−

0

1
1 − x

[
y2
]1
y=x

dx =
1
2

∫ 1−

0

1 − x2

1 − x
dx

=
1
2

∫ 1

0

(1 + x) dx =
1
2

[
x +

1
2

x2

]1

0

=
3
4
.
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2) The difficult double integral:∫ 1−

0

y

{∫ y

0

1
1 − x

dx

}
dy =

∫ 1−

0

y{− ln(1 − y)}dy

= − lim
y→1−

{
y2

2
ln(1 − y) +

∫ y

0

t2

2
· 1
1 − t

dt

}

= − lim
y→1−

{
y2

2
ln(1 − y) +

1
2

∫ y

0

(
−1 − t +

1
1 − t

)
dt

}

= − lim
y→1−

{
y2

2
ln(1 − y) − 1

2
y − 1

4
y2 − 1

2
ln(1 − y)

}

= lim
y→1−

{
− (y − 1)(y + 1) ln(1 − y)

2

}
+

1
2

+
1
4

=
3
4
.

Anyway, we get the same value by both methods.

Similarly, when we only show the easiest method,

∫
B

y2f(x, y) dS =
∫ 1−

0

1
1 − x

{∫ 1

x

y2 dy

}
dx =

1
3

∫ 1−

0

1
1 − x

[
y3
]1
y=x

dx

=
1
3

∫ 1−

0

1 − x3

1 − x
dx =

1
3

∫ 1

0

{1 + x + x2} dx =
1
3

[
x +

x2

2
+

x3

3

]1

0

=
1
3

(
1 +

1
2

+
1
3

)
=

11
18

.
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Example 4.5 It is well-known that∫ +∞

0

tne−t dt = n!, n ∈ N0.

Now, let

B = {(x, y) | 0 ≤ x ≤ y < +∞}
and

I =
∫

B

xn(y − x)m e−y dS, m, n ∈ N0.

1) Prove that I is convergent with the value n!m!. (Truncate B by the lines x = T and y = T + x,
and then let T tend to plus infinity).

2) Truncate B by the line y = T . Let T → +∞ and find an expression of the integral

J =
∫ 1

0

tn(1 − t)m dt, m, n ∈ N0.

In order to secure that the two integrals over [0,+∞[ and [0, 1] exist it is not necessary to require that
m and n are integers. It suffices to require that they are bigger than −1. On this basis one introduced
the gamma function and the beta function in the following way:

Γ(ξ) =
∫ +∞

0

tξ−1 e−y dt, ξ > 0,

and

B(ξ, η) =
∫ 1

0

tξ−1(1 − t)η−1 dt, ξ > 0, η > 0.

Notice that the exponents are written differently from the original integrals. In particular, Γ(n+1) = n!.

3. Use the result of 2) to express B(ξ, η) by means of the gamma function.

A Improper plane integral; the gamma function and the beta function.

D Follow the guidelines.

I Just in case, we first prove that

(3)
∫ +∞

0

tn e−t dt = n!, n ∈ N0.

If n = 0, then∫ +∞

0

e−t dt =
[−e−t

]+∞
0

= 1 = 0!.

If n = 1, then∫ +∞

0

t e−t dt =
[−t e−t − e−t

]+∞
0

= 1 = 1!.

 Improper plane integral
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Figure 68: The truncation BT .

Assume that (3) holds for some n ∈ N. Then we get by partial integration

∫ +∞

0

tn+1e−t dt =
[−tn+1e−t

]+∞
0

+ (n + 1)
∫ +∞

0

tne−tdt = 0 + (n + 1)n! = (n + 1)!

according to the assumption of induction. Then (3) follows by induction.

The domain

B = {(x, y) | 0 ≤ x ≤ y < +∞} = {(x, y) | 0 ≤ x < +∞, x ≤ y < +∞}

is unbounded. The integrand xn(y − x)me−y is ≥ 0 in B, so we can use the truncation

BT = {(x, y) | 0 ≤ x ≤ T, x ≤ y ≤ x + T},

which catches every point of B, when T → +∞. In fact, every (x, y) ∈ B lies in BT , if only
T ≥ T0 = 2x.

1) The shape of the domain invites one first to integrate with respect to y and then with respect
to x. The plane integral over BT becomes∫

BT

xn(y − x)me−y dS =
∫ T

0

xn

{∫ x+T

x

(y − x)me−y dy

}
dx

=
∫ T

0

xne−x

{∫ x+T

x

(y − x)me−(y−x) dy

}
dx =

∫ T

0

xne−x

{∫ T

0

tme−t dt

}
dx.

This implies according to (3) that

I =
∫

B

xn(y − x)me−y dS = lim
T→+∞

∫
BT

xn(y − x)me−y dS

= lim
T→+∞

{∫ T

0

xne−x dx

}{∫ T

0

tme−t dt

}
= n!m!.
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Figure 69: The truncation B′
T .

2) Next we truncate in the following way

B′
T = {(x, y) | 0 ≤ x ≤ T, x ≤ y ≤ T} = {(x, y) | 0 ≤ y ≤ T, 0 ≤ x ≤ y}.

Applying the substitution y = ty, t ∈ [0, 1], we get∫
B′

T

xn(y − x)me−y dS =
∫ T

0

e−y

{∫ y

0

xn(y − x)m dx

}
dy

=
∫ T

0

e−yyn+m+1

{∫ 1

0

tn(1 − t)m dt

}
dy =

∫ 1

0

tn(1 − t)m dt ·
∫ T

0

e−yyn+m+1 dy.

By taking the limit T → +∞, followed by the result of 1) and (3), we get

n!m! =
∫

B

xn(y − x)me−y dS = lim
T→+∞

∫
B′

T

xn(y − x)me−y dS

= (n + m + 1)!
∫ 1

0

tn(1 − t)m dt,

hence

(4) J =
∫ 1

0

tn(1 − t)m dt =
n!m!

(n + m + 1)!
.

3) A small consideration shows that the proofs of 1) and 2) carry over unchanged if only n, m ≥ 0
are real. If instead n > −1 or m > −1, we need an extra standard consideration concerning
the existence of the improper plane integral (truncation of the domain around (0, 0), etc.). The
details are skipped here.

All this means that the result of 2) can now be written,

J = B(n + 1,m + 1) =
Γ(n + 1)Γ(m + 1)

Γ(n + m + 2)
, m, n > −1.

Putting x = n + 1 and y = m + 1 we get n + m + 2 = x + y, thus

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, x, y > 0.

 Improper plane integral
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Example 4.6 Let f : R → R be a C1-function, where the limit

f(+∞) = lim
x→+∞ f(x),

exists and is finite, and which also satisfies the condition∫ +∞

1

f(x) − f(+∞)
x

dx is convergent.

Show by reducing the plane integral of the function g(x, y) = f ′(xy) over the rectangle [0, c] × [a, b] in
two ways and then let c tend towards +∞ that∫ +∞

+

f(ax) − f(bx)
x

dx = {f(0) − f(+∞)} ln
(a

b

)
.

Note that there do not exist a theorem which makes it possible to let c tend towards +∞ under the
sign of integration. However, the result can be obtained by some rearrangements, by which one finally
can apply the given condition.

A Improper integral computed by means of an improper plane integral.

D Follow the guidelines. Be in particular careful with the limit.

I By the reduction of the plane integral we get on one hand that∫
[0,c]×[a,b]

f ′(xy) dS =
∫ c

0

{∫ b

a

f ′(xy) dy

}
dx =

∫ c

0

[
f(xy)

x

]b

y=a

dx =
∫ c

0

f(bx) − f(ax)
x

dx.

We note that the integrand of the latter integral can be extended continuously to x = 0, e.g. by
L’Hôpital’s rule,

lim
x→0

f(bx) − f(ax)
x

= lim
x→0

bf ′(bx) − af ′(ax)
1

= (b − a)f ′(0),

which can be used as the value of the integrand at x = 0.

On the other hand, we get by interchanging the order of integration,∫
[0,c]×[a,b]

f ′(xy) dS =
∫ b

a

{∫ c

0

f ′(xy) dx

}
dy =

∫ b

a

[
f(xy)

y

]c

x=0

dy =
∫ b

a

f(ct) − f(0)
y

dy.

When we identify the two expressions of change their signs we get∫ c

0

f(ac) − f(bx)
x

dx =
∫ b

a

f(0) − f(cy)
y

dy.

Here we cannot take the limit c → +∞ on the right hand side. Instead we rewrite it in the
following way,∫ b

a

f(0) − f(cy)
y

dy =
∫ b

a

f(0) − f(+∞)
y

dy +
∫ b

a

f(+∞) − f(cy)
y

dy

= {f(0) − f(+∞)} ln
b

a
−
∫ b

a

f(cy) − f(+∞)
cy

c dy (where t = cy)

{f(0) − f(+∞)} ln
b

a
−
∫ cb

ca

f(t) − f(+∞)
t

dt,
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i.e.

(5)
∫ c

0

f(ax) − f(bx)
x

dx = {f(0) − f(+∞)} ln
b

a
−
∫ cb

ca

f(t) − f(+∞)
t

dt.

We shall now prove that the right hand side of (5) is convergent for c → +∞. The first term is
constant, so we shall consider the latter integral. By the assumptions,∫ +∞

1

f(t) − f(+∞)
t

dt convergent.

This means that

lim
k→+∞

∫ +∞

k

f(t) − f(+∞)
t

dt = 0.

By the definition of convergency there exists to every ε > 0 a k(ε) ≥ 1, such that∣∣∣∣
∫ +∞

k

f(t) − f(+∞)
t

dt

∣∣∣∣ <
ε

2
for every k ≥ k(ε).
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If c satisfies k(ε) ≤ ca < cb, then we get the estimate∣∣∣∣∣
∫ cb

ca

f(t)−f(+∞)
t

dt

∣∣∣∣∣ =
∣∣∣∣
∫ +∞

ca

f(t)−f(+∞)
t

dt−
∫ +∞

cb

f(t)−f(+∞)
t

dt

∣∣∣∣
≤
∣∣∣∣
∫ +∞

ca

f(t)−f(+∞)
t

dt

∣∣∣∣+
∣∣∣∣
∫ +∞

cb

f(t)−f(+∞)
t

dt

∣∣∣∣ <
ε

2
+

ε

2
= ε.

This holds for every ε > 0, hence it follows that the right hand side of (5) is convergent for c → +∞,
and the same must then be the case of the left hand side. Finally, by taking the limit.∫ +∞

0

f(ax) − f(bx)
x

dx = {f(0) − f(+∞)} ln
(

b

a

)

as required.

Example 4.7 Let

B = {(x, y) | x2 + y2 ≤ 4, y ≥ |x|}
and

f(x, y) =
xn + y2

y4 + x2y2
, (x, y) ∈ B \ {(0, 0)},

where n is an integer.

1. Prove the inequality f(x, y) ≥ 0 for all (x, y) ∈ B \ {(0, 0)}.
Then consider the improper plane integral

I =
∫

B

f(x, y) dx dy.

2. Find the values of n, for which I is convergent.

3. Compute the value of I for n = 3.

A Improper plane integral.

D Sketch B. Estimate f(x, y). Check the improper plane integral.

I 1) From y ≥ |x| follows that y2 ≥ |x|2 ≥ −xn, hence xn + y2 ≥ 0, and we clearly have

y4 + x2y2 = y2(x2 + y2) > 0 for (x, y) ∈ B \ {(0, 0)}.

2) The domain B is best described in polar coordinates by

B =
{

(�, ϕ)
∣∣∣∣ 0 ≤ � ≤ 2, ϕ ∈

[
π

4
,

3π

4

]}
.

Put for ε ∈ ]0, 2[,

Bε =
{

(�, ϕ)
∣∣∣∣ ε ≤ � ≤ 2, ϕ ∈

[
π

4
,

3π

4

]}
.
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Figure 70: The domain B.

Then∫
Bε

f(x, y) dx dy =
∫

Bε

�n

�4
· cosn ϕ + sinn ϕ

sin4 ϕ + cos2 ϕ sin2 ϕ
�dϕd�

=
∫ 3π

4

π
4

cosn ϕ + sinn ϕ

sin2 ϕ
dϕ ·

∫ 2

ε

�n−3 d�.

The former integral exists for every n ∈ N independently of ε > 0, because sin2 ϕ ≥ 1
2

for

ϕ ∈
[
π

4
,

3π

4

]
.

Furthermore, the limit

lim
ε→0

∫ 2

ε

�n−3 d�

exists and has a finite value if and only if n−3 > −1, i.e. if and only if n > 2, or put in another
way, if and only if n ∈ N \ {1, 2}, since we require that n ∈ N.

3) If n = 3, then it follows from the above that

∫
Bε

f(x, y) dx dy =
∫ 3π

4

π
4

cos3 ϕ + sin3 ϕ

sin2 ϕ
dϕ ·

∫ 2

ε

d�,

thus∫
B

f(x, y) dx dy = 2
∫ 3π

4

π
4

cos2 ϕ

sin2 ϕ
· cos ϕ dϕ + 2

∫ 3π
4

π
4

sin ϕ dϕ

= 0 + 2[− cos ϕ]
3π
4

π
4

= 2
(

1√
2

+
1√
2

)
= 2

√
2.
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Example 4.8 Let B be the rectangle [0, 1] × [−1, 1]. Show that the integral

I =
∫

B

1
1 + xy

dS

is convergent and has the value
1
4

π2.
Hint. Replace y the new variable of integration u given by

sinu = y +
1
2

x
(
y2 − 1

)
, −π

2
≤ u ≤ π

2
.

First integrate with respect to x and apply the formula

tan
(π

4
+

u

2

)
=

1 + sinu

cos u
.

A Improper plane integral.

D Check that the integrand is > 0, and the points in which it not defined. Prove that using (x, u)
instead of (x, y) is a legal change of parameters. Explain the trigonometric formula, and apply the
trick.

–1.5

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 71: The domain B with the curve of singularities y = − 1
x

.

Clearly, 1 + xy ≥ 0 i B, where 1 + xy = 0 only at the point (1,−1) ∈ B. The integrand is > 0 in
B \ {(1,−1)}, so we can allow ourselves carelessly to skip the truncation. In fact, if the integral is
divergent, this can only happen by getting∫

B

f(x, y) dS = +∞,

which is immediately seen. This convention eases the solution of the task.

Remark 1. By the traditional procedure one would e.g. get

I =
∫

B

1
1 + xy

dS =
∫ 1

−1

{∫ 1

0

1
1 + xy

dx

}
dy =

∫ 1

−1

1
y

ln(1 + y) dy,
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which does not look promising. It is here of no help to interchange the order of integration, because
than one would get the even more incalculable expression

I =
∫ 1

0

1
x

ln
(

1 + x

1 − x

)
dx.

Therefore, we choose to use the hint. ♦

Remark 2. For the sake of completeness we here prove the trigonometric formula which is given
in the hint. When −π

2
< u <

π

2
, then

tan
(π

4
+

u

2

)
=

1 + tan u
2

1 − tan u
2

=
cos u

2 + sin u
2

cos u
2 − sin u

2

=

(
cos u

2 + sin u
2

)2
cos2 u

2 − sin2 u
2

=
cos2 u

2 + sin2 u
2 + 2 sin u

2 · cos u
2

cos u
=

1 + sinu

cos u
,

and the formula is proved. ♦
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First notice that for every fixed x ∈ [0, 1],

ϕ(x, y) = y +
1
2

x
(
y2 − 1

)
, y ∈ [−1, 1],

is increasing in y, because

∂ϕ

∂y
= 1 + xy ≥ 0 i B,

and this expression if only = 0 for (x, y) = (1,−1) ∈ B.

Since ϕ is continuous, the range is connected (first main theorem for continuous functions). Now,
ϕ(x,−1) = −1 and ϕ(x, 1) = 1, so the range is again B. This shows the legacy of introducing the
transform of the coordinate,

u = Arcsin
(

y +
1
2

x
(
y2 − 1

))
, −π

2
≤ u ≤ π

2
.

Remark 3. We shall not use this expression in the rest of the example. The essential thing here
is only to assure that we can make the given change of variable. ♦

We now put

sin u = y +
1
2

x
(
y2 − 1

)
, −π

2
≤ u ≤ π

2
.

If x = 0 (a null set), then y = sinu.

If x > 0 and (x, y) ∈ B, then

2
x

sin u =
2
x

y + y2 − 1 =
(

y +
1
x

)2

−
(

1 +
1
x2

)
,

hence

y = − 1
x

+
1
x

√
1 + 2x sin u + x2 =

√
1 + 2x sin u + x2 − 1

x
,

because |y| ≤ 1 and 0 < x ≤ 1 imply that we can only use one sign in front of the square root.
Notice that

1 + 2x sin u + x2 = (x + sinu)2 + cos2 u,

so the square root is defined.

Now,

∂y

∂u
=

1
x
· 1
2

2x cos u√
1 + 2x sin u + x2

=
cos u√

1 + 2x sin u + x2
,

and the Jacobian of the change of variables is∣∣∣∣∣∣∣∣∣

∂x

∂x

∂x

∂u

∂y

∂x

∂y

∂u

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 0


cos u√

1 + 2x sin u + x2

∣∣∣∣∣∣∣ =
cos u√

1 + 2x sin u + x2
,
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where  indicates that there is no need to compute
∂y

∂x
, because it shall later be multiplied by 0.

Finally,

1 + xy = 1 +
√

1 + 2x sin u + x2 − 1 =
√

1 + 2x sin u + x2.

By insertion into the formula of changing variables we get(notice: the integrals are still improper
with a positive integrand),∫

B

1
1 + xy

dS =
∫ π

2

−π
2

{∫ 1

0

1√
1 + 2x sin u + x2

· cos u√
1 + 2x sin u + x2

dx

}
du

=
∫ π

2

−π
2

{∫ 1

0

cos u

1 + 2x sin u + x2
dx

}
du =

∫ π
2

−π
2

{∫ 1

0

cos u

(x + sinu)2 + cos2
dx

}
du

=
∫ π

2

−π
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
cos u

∫ 1

0

1

1 +
(

x + sinu

cos u

)2 dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

du =
∫ π

2

−π
2

[
Arctan

(
x + sinu

cos u

)]1

x=0

du

=
∫ π

2

−π
2

{
Arctan

(
1 + sinu

cos u

)
− Arctan(tan u)

}
du.

If ψ ∈
]
−π

2
,

π

2

[
, then Arctan(tanψ) = ψ, hence the latter term of the integrand is −u.

If u ∈
]
−π

2
,

π

2

[
, then

π

4
+

u

2
∈
]
−π

2

[
, hence

Arctan
(

1 + sinu

cos u

)
= Arctan

(
tan

(π

4
+

u

2

))
=

π

4
+

u

2
.

Then by insertion,∫
B

1
1 + xy

dS =
∫ π

2

−π
2

{π

4
+

u

2
− u

}
du =

π

4
· π − 1

2

∫ π
2

−π
2

u du =
π2

4
,

as required.

Remark 4. If we above first had integrated with respect to u (which could be tempting, considering
the integrand), then we would get∫

B

1
1 + xy

dS =
∫ 1

0

{∫ π
2

−π
2

cos u

1 + 2x sin u + x2
du

}
dx =

∫ 1

0

[
1
2x

ln
(
1 + 2x sin u + x2

)]π
2

u=−π
2

dx

=
∫ 1

0

1
2x

ln
(

1 + 2x + x2

1 − 2x + x2

)
dx =

∫ 1

0

1
x

ln
(

1 + x

1 − x

)
dx,

and we had ended in the same dead end as before.
Note however, that if we compare the results of the “impossible” rearrangements of the expression
which we have found, we have unawares proved that∫ 1

−1

1
x

ln(1 + x) dx =
∫ 1

0

1
x

ln
(

1 + x

1 − x

)
dx =

π2

4
,

which is a result which usually cannot be obtained in Calculus. ♦
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Example 4.9 Let E be the square [0, 1] × [0, 1]. Find the integrals

J1 =
∫

E

1
1 − xy

dS, J2 =
∫

E

1
1 + xy

dS,

bo forming J1 − J2 and J1 + J2 and then apply the result of the previous example.

A Computation of “impossible” plane integrals, of which one is improper.

D Apply the hint as well as results from Example 4.8, supplied by an attempt to calculate J1

directly.

I The integrands are > 0, thus we shall not need to be too careful with the improper plane integrals.
If one of them should be divergent, this will show up naturally as the value +∞.

First notice that (an improper plane integral)

J1 =
∫

E

1
1 − xy

dS =
∫ 1

0

{∫ 1

0

1
1 − xy

dy

}
dx

=
∫ 1

0

[
− 1

x
ln(1 − xy)

]1

y=0

dx = −
∫ 1

0

1
x

ln(1 − x) dx.

Then (an improper plane integral of non-negative integrand)

J1 − J2 =
∫

E

{
1

1 − xy
− 1

1 + xy

}
dS =

∫
E

2xy

1 − x2y2
dS =

∫ 1

0

{∫ 1

0

2xy

1 − x2y2
dy

}
dx

= −
∫ 1

0

1
x

[
ln
(
1−x2y2

)]1
y=0

dy = −
∫ 1

0

1
x

ln(1−x2) dx = −1
2

∫ 1

0

1
t

ln(1−t) dt =
1
2

J1,

hence J2 =
1
2

J1.

Finally, it follows from Example 4.8,

J1 + J2 =
3
2

J1 =
∫ 1

0

{∫ 1

0

1
1 − xy

dy

}
dx +

∫ 1

0

{∫ 1

0

1
1 + xy

dy

}
dx

=
∫ 1

0

{∫ 0

−1

1
1 + xy

dy

}
dx +

∫ 1

0

{∫ 1

0

1
1 + xy

dy

}
dx =

∫ 1

0

{∫ 1

−1

1
1 + xy

dy

}
dx =

π2

4
,

thus

J1 = −
∫ 1

0

1
x

ln(1 − x) dx =
2
3
· π2

4
=

π2

6
and J2 =

1
2

J1 =
π2

12
.
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Example 4.10 Let B be the disc of centrum (0, 0) and radius a. Prove that the improper integrals

I =
∫

B

1√
a2 − x2 − y2

dS and J =
∫

B

1√
a2 − x2 − y2 ·

√
x2 + y2

dS

are convergent, and find their values.

A Improper integrals.

D The integrands are positive, where they are defined, hence it suffices to truncate in polar coordi-
nates, followed by taking the limit.

I 1) The integrand is defines and positive in the interior of the disc B. When we use polar coordinates
and integrate over Ba−ε(0), i.e. the disc of centrum (0, 0) and radius a − ε, then

Iε =
∫

Ba−ε(0)

1√
a2 − x2 − y2

dS = 2π

∫ a−ε

0

r√
a2 − r2

dt = π
[
−
√

a2 − r2
]a−ε

0

= π
{√

a2 −
√

a2 − (a − ε)2
}

= π
{

a −
√

2aε − ε2
}
→ π a for ε → 0 + .
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We conclude that the improper integral is convergent and it has the value

I =
∫

B

1√
a2 − x2 − y2

dS = π a.

2) The integrand is defined and positive in B◦ \ {0}. We choose the truncation as

Bε := Ba−ε(0) \ Bε(0).

The integrand is positive everywhere in Bε, so

Jε =
∫

Bε

1√
a2 − x2 − y2 ·

√
x2 + y2

dS = 2π

∫ a−ε

ε

r√
a2 − r2 · r dr = 2π

∫ a−ε

ε

dr√
a2 − r2

.

By choosing the substitution r = a · sin t we get

Jε = 2π

∫ Arcsin(1− ε
a )

Arcsin( ε
a )

a · cos t

a · cos t
dt = 2π

{
Arcsin

(
1 − ε

a

)
− Arcsin

( ε

a

)}
.

It follows that the improper integral is convergent, and that is has the value

J =
∫

B

1√
a2 − x2 − y2 ·

√
x2 + y2

dS = lim
ε→0

Jε = 2π{Arcsin 1 − Arcsin 0} = π2.

Example 4.11 Let B be the triangle given by the inequalities

0 ≤ y ≤ x and 0 ≤ x ≤ 1.

Show that the improper plane integral∫
B

(
y − lnx

x

)
dS

is convergent, and find its value.

A Improper plane integral.

D First prove that the integrand is ≥ 0, whenever it is defined. Then truncate; compute the plane
integral over the truncated domain and finally, take the limit.

I The integrand is not defined at (0, 0) ∈ B.

If (x, y) ∈ B \ {(0, 0)}, then 0 ≤ y ≤ 1 and 0 < x ≤ 1, s̊a −∞ < lnx ≤ 0, and hence

y − lnx

x
≥ 0 for (x, y) ∈ B \ {(0, 0)}.

The integrand is positive or zero elsewhere, so we can choose the following truncation,

Bε : 0 ≤ y ≤ x og ε ≤ x ≤ 1, for 0 ≤ ε < 1.

 Improper plane integral
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Figure 72: The domains B and B0,2.

When we integrate over this truncated domain, we get

∫
Bε

(
y − lnx

x

)
dS =

∫ 1

ε

{∫ x

0

(
y − lnx

x

)
dy

}
dx =

∫ 1

ε

(
x2

2
− lnx

)
dx

=
[
x3

6
− (x ln x − x)

]1

ε

=
7
6
− ε3

6
+ ε ln ε − ε.

It follows from the rules of magnitudes that

ε ln ε = −
ln
(

1
ε

)
1
ε

→ 0 for ε → 0+,

hence it follows by taking the limit that the improper plane integral exists, and it has the value∫
B

(
y − lnx

x

)
dS = lim

ε→0+

∫
Bε

(
y − lnx

x

)
dS =

7
6
.

Example 4.12 . Let B be the triangle given by the inequalities

0 ≤ y ≤ x, 0 ≤ x ≤ 1.

Prove that the improper integral∫
B

2y

x2
dS

is convergent, and find its value.

A Improper plane integral.

D Sketch a figure. Truncate the domain and compute.

 Improper plane integral
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0
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Figure 73: The domain B truncated in the neighbourhood of (0, 0).

I The integrand is not defined at (0, 0). It is positive everywhere in the remaining set B \ {(0, 0)}.
Hence it suffices to truncate by an ε ∈ ]0, 1[ as on the figure, thereby obtaining the domain

Bε = {(x, y) | 0 ≤ y ≤ x, ε ≤ x ≤ 1}.

Then by integration over Bε,∫
Bε

2y

x2
dS =

∫ 1

ε

{∫ x

0

2y

x2
dy

}
dx =

∫ 1

ε

[
y2

x2

]x

y=0

dx =
∫ 1

ε

1 dx = 1 − ε.

This expression tends to 1 for ε → 0+, so we conclude that the improper integral is convergent
and its value is∫

B

2y

x2
dS = lim

ε→0+

2y

x2
dS = lim

ε→0+
(1 − ε) = 1.
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5 Transformation of a plane integral

Example 5.1 Let B be the trapeze which is bounded by the coordinate axes and the lines given by the

equations x + y = 1 and x + y =
1
2
. Compute the plane integral

∫
B

exp
(

y

x + y

)
dxdy

by introducing the new variable (u, v) = (x + y, x − y).

A Transformation of a plane integral.

D Compute the Jacobian and find the new domain D.
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x

Figure 74: The domain B in the XY -plane.

–1
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Figure 75: The domain D after the transformation to the UV -plane.

I From

(x, y) = Φ(u, v) =
(

u + v

2
,
u − v

2

)
,
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follows that

JΦ =
∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣

1
2

d 1
2

1
2

−1
2

∣∣∣∣∣∣∣∣
= −1

2
,

and

D =
{

(u, v)
∣∣∣∣ 1

2
≤ u ≤ 1, − u ≤ v ≤ u

}
.

Then by the formula of transformation,

∫
B

exp
(

y

x + y

)
dxdy =

∫
D

exp
(

u − v

2u

)
·
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv =
1
2

∫ 1

1
2

√
e

{∫ u

−u

exp
(
− v

2u

)
dv

}
du

=
√

e

2

∫ 1

1
2

(−2u)
[
exp

(
− v

2u

)]u

v=−u
du = −√

e

∫ 1

1
2

u ·
(

1√
e
−√

e

)
du

= (e − 1)
∫ 1

1
2

u du =
3
8

(e − 1).
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Example 5.2 Let B denote set in the first quadrant, which is bounded by the curves xy = 1 and
xy = 2 and by the lines y = x and y = 4x. Sketch B and compute the plan integral∫

B

x2y2 dxdy

by introducing the new variables (u, v) =
(
xy,

y

x

)
.

A Transformation of a plane integral.

D Sketch B. Find den inverse function

(x, y) = (x(u, v), y(u, v)) = Φ(u, v),

and find the corresponding domain D in the UV -plane. Compute the Jacobian and finally trans-
form the plane integral.

0
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x

Figure 76: The domain B in the XY -plane.

I If u = xy and v =
y

x
and x, y > 0, then u, v > 0, and

x(u, v) =
√

u

v
, y(u, v) =

√
uv.

The domain D is given by

1 ≤ xy = u ≤ 2 and 1 ≤ y

x
= v ≤ 4,

hence

D = {(u, v) | 1 ≤ u ≤ 2, 1 ≤ v ≤ 4} = [1, 2] × [1, 4],

i.e. a rectangle in the UV -plane, which it is no need to sketch.

Finally, the Jacobian is∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

2
√

uv
−1

2
· 1
v

√
u

v
1
2

√
v

u

1
2
· 1
u

√
u

v

∣∣∣∣∣∣∣∣
=

1
4

{
1√
uv

√
u

v
+
√

v

u
· 1
v

√
u

v

}
=

1
4

{
1
v

+
1
v

}
=

1
2v

.
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We get by the transformation formula of the plane integral∫
B

x2y2 dxdy =
∫

D

u2 · 1
2v

dudv =
1
2

∫ 2

1

u2 du ·
∫ 4

1

1
v

dv

=
1
2

[
1
3

u3

]2

1

· [ln v]41 =
1
6
(8 − 1) ln 4 =

7
3

ln 2.

Example 5.3 Find the area of the set in the first quadrant, which is bounded by the curves

xy = 4, xy = 8, xy3 = 5, xy3 = 15,

by introducing the new variables u = xy and v = xy3.

A Area of a set computed by a transformation of a plane integral.

D Find the transformed domain D in the UV -plane and the inverse functions x(u, v) and y(u, v) by
this transformation. Calculate the Jacobian and apply the transformation formula to find the area.

0

0.5

1

1.5

2

y

2 4 6 8 10

x

Figure 77: The domain D in the XY -plane. (Different scales on the axes).

I Let B be the given set in the first quadrant. Then x, y > 0 for (x, y)
∫

B. It follows immediately
that we by the transformation get the domain

D = [4, 8] × [5, 15].

From u = xy, v = xy3, u > 0 and v > 0 follows y2 =
v

u
and x2 =

u3

v
, i.e.

y = +
√

v

u
, and x = +

√
u3

v
.

Then we get the Jacobian,

J(u, v) =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
3
2

√
u

v
−1

2

√
u3

v3

−1
2

√
v

u3

1
2

√
1
uv

∣∣∣∣∣∣∣∣
=

3
4

1
v
− 1

4
1
v

=
1
2v

> 0.
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Hence the area is

areal(B) =
∫

B

dxdy =
∫

D

J(u, v) dudv =
∫ 8

4

du ·
∫ 1

4

5
1
2v

dv =
4
2
[ln v]155 = 2 ln 3.

Example 5.4 Find the area of the set in the first quadrant, which is bounded by the curves

y = x3, y = 4x3, x = y3, x = 4y3,

by introducing the new variables

u =
y

x3
, v =

x

y3
.

A Area of a set by a transformation of a plane integral.

D Sketch the domain B. Then find D and x(u, v) and y(u, v) by the transformation. Compute the
Jacobian and apply the transformation formula to find the area.
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Figure 78: The domain B in the XY -plane.

I The curves y = x3 and x = y3 intersect at (x, y) = (1, 1). The curves y = 4x3 and x = 4y3 intersect

at (x, y) =
(

1
2
,
1
2

)
. It follows that if the transformation exists and is bijective, then

D = [1, 4] × [1, 4].

Clearly, x > 0 and y > 0, and hence u > 0 and v > 0. We shall now try to solve the equations

u =
y

x3
and v =

x

y3
for u, v ∈ [1, 4].

From

u3v =
y3

x9
· x

y3
=

1
x8
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follows that

x = u− 3
8 v− 1

8 , and similarly y = u− 1
8 v− 3

8 .

The Jacobian is

J(u, v) =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−3

8
u− 11

8 v− 1
8 −1

8
u− 9

8 v− 3
8

−1
8

u− 3
8 v− 9

8 −3
8

u− 1
8 v− 11

8

∣∣∣∣∣∣∣∣
=

9
64

u− 3
2 v− 3

2 − 1
64

u− 3
2 v− 3

2 =
1
8

u− 3
2 v− 3

2 .

We get the area by applying the transformation formula

area(B) =
∫

B

dS =
1
8

∫ 4

1

u− 3
2 du ·

∫ 4

1

v− 3
2 dv =

1
8

{∫ 4

1

t−
3
2 dt

}2

=
1
8

{[
− 2√

t

]4

1

}2

=
1
8

(2 − 1)2 =
1
8
.

 Transformation of a plane integral
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Example 5.5 Let B ⊂ R
2 be given by

0 ≤ x, 0 ≤ y,
√

x +
√

y ≤ 1.

find the area of B and the plane integral

I =
∫

B

exp
[(√

x +
√

y
)4]

dx dy

by introducing the new variables

u =
√

x +
√

y, v =
√

x −√
y.

A Transformation of a plane integral.

D Sketch B; find x and y as functions of u and v; compute the Jacobian; find the domain of the
parameters (u, v) ∈ A; finally, apply the transformation theorem.
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Figure 79: The domain A in the (X,Y )-plane.

I If we put u =
√

x +
√

y and v =
√

x −√
y, then

2
√

x = u + v and 2
√

y = u − v,

thus

x =
1
4

(u + v)2 and y =
1
2

(u − v)2.

Then we get the Jacobian

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
2 (u + v) 1

2 (u + v)

1
2 (u − v) − 1

2 (u − v)

∣∣∣∣∣∣
=

1
2

(u + v) · 1
2

(u − v)
∣∣∣∣ 1 1

1 −1

∣∣∣∣ = −1
2

(u2 − v2).

We shall now find the domain of the new parameters A:
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1) The boundary part x = 0 corresponds to u + v = 0.

2) The boundary part y = 0 corresponds to u − v = 0.

3) The boundary part
√

x +
√

y = 1 corresponds to u = 1.

Since a closed and bounded set by the second main theorem of continuous functions is mapped into
a closed and bounded set by this continuous change of variables, the new domain is the triangle A
on the figure.
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0
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–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 80: The domain A in the (U, V )-plane.

Note that the Jacobian is negative on A, so this time we shall need the absolute values in the
formula.

By the transformation theorem,

area(B) =
∫

B

dx dy =
∫

A

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv =
1
2

∫
A

(u2 − v2) du dv

=
1
2

∫ 1

0

{∫ u

−u

(u2 − v2) dv

}
du =

1
2

∫ 1

0

[
u2v − 1

3
v3

]u

−u

du

=
1
2

∫ 1

0

(
2u3 − 2

3
u3

)
du =

2
3

∫ 1

0

u3 du =
1
6
,

and

I =
∫

B

exp
[(√

x +
√

y
)4)

dx dy =
1
2

∫
A

exp
(
u4
) · (u2 − v2

)
du dv

=
1
2

∫ 1

0

{∫ u

−u

exp
(
u4
) · (u2 − v2

)
dv

}
du =

2
3

∫ 1

0

exp
(
u4
) · u3 du

=
1
6

∫ 1

0

et dt =
e − 1

6
.
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Example 5.6 Define a vector field r : R
2 → R

2 in the following way,

r(u, v) = (eu cos v, eu sin v) .

Prove that the Jacobian Jr is different from zero almost everywhere, and that r is not injective.

A Jacobian and a non-injective transformation.

D Compute and exploit the periodicity.

I The Jacobian is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
eu cos v −eu sin v

eu sin v eu cos v

∣∣∣∣∣∣ = e2u �= 0.

Then note that (u, v) = (u0, v0 + 2pπ), p ∈ Z, are all mapped into the same point

(x, y) = (eu0 cos v0, e
u0 sin v0) ,

so the transformation is not injective.

Remark. We may add that R
2 by r is mapped (infinitely often) onto R

2 \ {(0, 0)}.

Example 5.7 Define a vector field r : R
2 → R

2 as follows:

r(u, v) =
(
u2 − v2, 2uv

)
.

Prove that the Jacobian Jr is different from zero almost everywhere ant that r is not injective.

A Jacobian and a non-injective transformation.

D Calculate the Jacobian and find two different (u, v)-points which are mapped into the same (x, y).

I The Jacobian is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
2u −2v

2v 2u

∣∣∣∣∣∣ = 4
(
u2 + v2

) �= 0 for (u, v) �= (0, 0).

Clearly, (u, v) and (−u,−v) are mapped into the same point,

(x, y) =
(
u2 − v2, 2uv

)
,

so the map is not injective for (u, v) �= (0, 0).
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Example 5.8 Let B be the parallelogram of vertices (0, 0), (1,−1), (2, 1) and (3, 0). Compute the
plane integral

I =
∫

B

cos( 1
2 π(x + y))

1 + x − 2y
dx dy

by introducing the new variables

u = x + y, v = x − 2y.

A Plane integral by a change of variables and the transformation formula.

D Sketch B and find the domain D. Compute the Jacobian and insert into the formula.

 Transformation of a plane integral
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Figure 81: The parallelogram B.

I It follows from the figure that

u = x + y ∈ [0, 3] and v = x − 2y ∈ [0, 3],

and the new domain is the square D = [0, 3] × [0, 3].

From

x =
2
3

u +
1
3

v and y =
1
3

u − 1
3

v,

follows that the Jacobian is

∂(x, y)
∂(u, v)

=
∣∣∣∣ 2

3
1
3

1
3 − 1

3

∣∣∣∣ = −1
9
.

When we finally put everything into the transformation formula, then

I =
∫

B

cos( 1
2 π(x + y))

1 + x − 2y
dx dy =

∫
D

cos( 1
2 π · u)

1 + v

∣∣∣∣−1
9

∣∣∣∣ du dv

=
1
9

∫ 3

0

cos
(π

2
u
)

du ·
∫ 3

0

dv

1 + v
=

1
9
· 2
π

[
sin

(π

2
u
)]3

0
· [ln(1 + v)]30

=
2
9π

{
sin

(
3π

2

)
− 0

}
· {ln 4 − ln 1} = − 4

9π
ln 2.
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Example 5.9 Let B be the plane set which is bounded by the X-axis and the line of equation y = x
and an arc of the parabola given by

5x = 4 + y2, y ∈ [0, 1].

Calculate the plane integral

I =
∫

B

cos

⎡
⎣(√5

4
x + y +

√
5
4

x − y

)4
⎤
⎦ dx dy

by introducing the new variables (u, v) given by

5x = u2 + v2, 2y = uv, −u ≤ v ≤ u.

A Plane integral by a change of variables and the transformation formula.

D Sketch B and find the new domain D. Compute the Jacobian and put everything into the formula.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 82: The point set B.

I It follows from 5x = u2 + v2 and 2y = uv that

5x + 4y = u2 + v2 + 2uv = (u + v)2, 5x − 4y = u2 + v2 − 2uv = (u − v)2.

Since |v| ≤ u, we get from this

u + v = +
√

5x + 4y and u − v = +
√

5x − 4y,

hence

u =
√

5x + 4y +
√

5x − 4y

2
and v =

√
5x + 4y −√

5x − 4y

2
.

Then we determine the boundary curves of the new domain.
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1) If y = x, x ∈ [0, 1], then

u =
√

9x +
√

x

2
= 2

√
x and v =

√
9x −√

x

2
=

√
x,

so this boundary curve is transformed into v =
1
2

u. Then by a small consideration, u ∈ [0, 2].

2) If y = 0, x ∈
[
0,

4
5

]
on the X-axis, then v = 0 and u =

√
5x ∈ [0, 2].

3) If finally 5x = 4 + y2, y ∈ [0, 1], then

4 + y2 = u2 + v2 and 4y = 2uv,

i.e.

(u + v)2 = (y + 2)2 og (u − v)2 = (2 − y)2,

thus

u + v = y + 2 ≥ 0 and u − v = 2 − y ≥ 0,

or u = 2 and v = y ∈ [0, 1]. Then we can sketch the new domain (a triangle).
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Figure 83: The new domain D.

Since

x =
1
5

(u2 + v2), y =
1
2

uv,

we get the Jacobian

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣
2
5 u 2

5 v

1
2 v 1

2 u

∣∣∣∣∣∣ =
1
5
(
u2 − v2

) ≥ 0.

Finally, since

5
4

x + y =
1
4

(5x + 4y) =
1
4
(
u2 + v2 + 2uv

)
=
(

u + v

2

)2

,

 Transformation of a plane integral



Download free books at BookBooN.com

Calculus 2c-5

 

118  

and similarly,

5
4

x − y =
(

u − v

2

)2

,

we get the plane integral

I =
∫

B

cos

⎡
⎣(√5

4
x + y +

√
5
4

x − y

)4
⎤
⎦ dx dy

=
∫

D

cos

[(
u + v

2
+

u − v

2

)4
]
· 1
5
(
u2 − v2

)
du dv =

∫
D

cos
(
u4
) · 1

5
(
u2 − v2

)
du dv

=
∫ 2

0

cos
(
u4
){∫ u

2

0

1
5
(
u2 − v2

)
dv

}
du =

∫ 2

0

cos
(
u4
) · 1

5

{
u2 · u

2
− 1

3
·
(

u3

8

)}
du

=
1
5
· 11
24

∫ 2

0

cos
(
u4
)

u3 du =
11
480

[
sin

(
u4
)]2

0
=

11
480

sin 16.
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Example 5.10 Let B be the plane point set which is bounded by the X-axis and the line of equation

y =
1
2

x, and the branches of the hyperbola,

x2 − y2 = 1, x > 0, and x2 − y2 = 4, x > 0.

Compute the plane integral

I =
∫

B

x + y

x − y
exp

(
x2 − y2

)
dx dy

by introducing the new variables (u, v) given by

x = u cosh v, y = u sinh v.

A Transformation of a plane integral.

D Sketch the domain B, and find the domain D of the new variables, and compute the Jacobian.
Finally, insert everything into the transformation formula.
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Figure 84: The domain B.

I If y = 0, x > 0, then v = 0 and x = u, hence the segment on the X-axis is transformed onto a
segment on the U -axis.

If y =
1
2

x, then u sinh v =
1
2

u cosh v, i.e.

tanh v =
1
2

=
ev − e−v

ev + e−v
=

e2v − 1
e2v + 1

,

or e2v + 1 = 2 e2v − 2, thus e2v = 3, and hence v =
1
2

ln 3, and u is a “free” variable.

If x2 − y2 = 1 x > 0, then u2 = 1, and since u > 0, we must have u = 1.

If x2 − y2 = 4, x > 0, then u2 = 4, and since u > 0, we must have u = 2.
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Summarizing, the new domain is the rectangle

D = [1, 2] ×
[
0,

1
2

ln 3
]

.

Then the Jacobian is computed,

∂(x, y)
∂(u, v)

=
∣∣∣∣ cosh v u sinh v

sinh v u cosh v

∣∣∣∣ = u > 0.

By the transformation formula,

I =
∫

B

x + y

x − y
exp

(
x2 − y2

)
dx dy =

∫
D

u(cosh v + sinh v)
u cosh v − sinh v)

exp
(
u2
) · u du dv

=
∫

D

e2v exp
(
u2
)

u du dv =
∫ 2

1

exp
(
u2
)

u du ·
∫ 1

2 ln 3

0

e2v dv

=
1
2
[
exp

(
u2
)]2

1
· 1
2
[
e2v

] 1
2 ln 3

0
=

1
4
(
e4 − e

) · (3 − 1) =
e

2
(
e3 − 1

)
.

Example 5.11 A triangle B in the (X,Y )-plane is given by the inequalities

x + y ≥ 1, 2y − x ≤ 2, y − 2x ≥ −2.

By introducing

u = x + y, v = x − y,(6)

we get a map from the (X,Y )-plane onto the (U, V )-plane.

1) Prove that the image D in the (U, V )-plane of B by this map is given by

1 ≤ u ≤ 4, u − 4 ≤ 3v ≤ 4 − u,

and sketch D.

2) Compute the plane integral∫
B

3
x + y

dx dy

by introducing the new variables given by (6).

A Transformation of a plane integral.

D Find the domain of the new variables D and compute the Jacobian, and then finally insert into
the formula.

I 1) It follows from (5.11) that

x =
u + v

2
og y =

u − v

2
.

Hence
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Figure 85: The new domain D.

a) x + y ≥ 1 is transformed into u ≥ 1,
b) 2y − x ≤ 2 is transformed into u − 3v ≤ 4,
c) y − 2x ≥ −2 is transformed into u + 3v ≤ 4.

We get by a rearrangement, u − 4 ≤ 3v ≤ 4 − u, hence u ≤ 4, and

D = {(u, v) | 1 ≤ u ≤ 4, u − 4 ≤ 3v ≤ 4 − u}.

We can here exploit that it is given that B is a triangle and thus bounded. The transformation
(5.11) is continuous, so D is connected an bounded, and then we can sketch the three boundary
lines and identify the image as the bounded part.

2) The Jacobian is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣∣ = −1
2
.

Then by the transformation formula,∫
B

3
x + y

dx dy =
∫

D

3
u

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv =
3
2

∫ 4

1

{∫ 4−u
3

− 4−u
3

dv

}
du

=
3
2

∫ 4

1

1
u
· 2 · 4 − u

3
du =

∫ 4

1

(
4
u
− 1

)
du = 4 ln 4 − 3 = 8 ln 2 − 3.
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Example 5.12 Let B be the bounded domain which is given by the inequalities

e−x ≤ y ≤ 2e−x, ex ≤ y ≤2 ex.

1. Sketch B.

If we put

(7) u = y ex, v = y e−x,

we get a map of the (X,Y )-plane into the (U, V )-plane.

2. Prove that the image of B by this map is the square [1, 2] × [1, 2].

3. Compute the plane integral

I =
∫

B

4y2 exp
(
y2 + x

)
dx dy

by introducing the new variables given by (7).

A Transformation of a plane integral.

D Follow the guidelines supplied by a computation of the Jacobian before everything is put into the
transformation formula.

Alternatively, one can actually in this case compute the plane integral directly.
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Figure 86: The domain B.

I 1) Let us first find the intersection point of the boundary curves of B.

a) If y = e−x = 2ex, then x = −1
2

ln 2 and hence y =
√

2.

b) If y = ex = 2e−x, then x =
1
2

ln 2 and hence y =
√

2.

c) The remaining two intersection points are immediately seen to be (0, 1) and (0, 2).

Then it is easy to sketch the domain B, even if one does not have MAPLE at hand.

2) By the change of variables u = y ex and v = y e−x,

a) y = ex and x ∈
[
0,

1
2

ln 2
]

is transformed into v = 1 and u = e2x ∈ [1, 2],

b) y = 2e−x and x ∈
[
0,

1
2

ln 2
]

is transformed into u = 2 and v = 2e2x ∈ [1, 2],

c) y = 2ex and x ∈
[
−1

2
ln 2, 0

]
is transformed into v = 2 and u = 2e2x ∈ [1, 2],

d) y = e−x and x ∈
[
−1

2
ln 2, 0

]
is transformed into u = 1 and v = e−2x ∈ [1, 2].

Thus we get the new domain D = [1, 2] × [1, 2] in the (U, V )-plane.

3) Then we find x and y as functions of u and v:

From y ≥ 1 and u, v ≥ 1, follows that

u

v
= e2x, dvs. x =

1
2

ln
(u

v

)
=

1
2

lnu − 1
2

ln v.

From v = y e−x, follows that

y = v ex = v

√
u

v
=

√
uv.

This gives the Jacobian

∂(x, y)
∂(u, v)

=
∣∣∣∣ 1

2u − 1
2v

1
2

√
v
u

1
2

√
u
v

∣∣∣∣ =
1
4

(
1√
uv

+
1√
uv

)
=

1
2

1√
uv

> 0.
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When we insert into the transformation formula, we get

I =
∫

B

4y2 exp
(
y2 + x

)
dx dy =

∫
D

4uv exp
(

uv +
1
2

ln
(u

v

)) 1
2

1√
uv

du dv

=
∫

D

4uv exp(uv) ·
√

u

v
· 1
2

1√
uv

du dv =
∫

D

2u exp(uv) du dv

= 2
∫ 2

1

{∫ 2

1

u exp(uv) dv

}
du = 2

∫ 2

1

[exp(uv)]2v=1 du

= 2
∫ 2

1

(
e2u − eu

)
du =

[
e2u − 2eu

]2
1

= e4 − 2e2 − e2 + 2e = e4 − 3e2 + 2e.

Alternatively, it is actually possible to compute the plane integral directly without using
the transformation theorem. First write B = B1 ∪ B2, as an (almost) disjoint union where

B1 =
{

(x, y)
∣∣∣∣ √

2 ≤ y ≤ 2, ln
(y

2

)
≤ x ≤ ln

(
2
y

)}

and

B2 =
{

(x, y)
∣∣∣∣ 1 ≤ y ≤

√
2, ln

(
1
y

)
≤ x ≤ ln y

}
.

We have the following natural splitting,∫
B

4y2 exp
(
y2 + x

)
dx dy = I1 + I2,

where

I1 =
∫

B1

4y2 exp
(
y2 + x

)
dx dy =

∫ 2

√
2

{∫ ln( 2
y )

ln( y
2 )

4y2 exp
(
y2
)

ex dx

}
dy

=
∫ 2

√
2

4y2 exp
(
y2
) · (2

y
− y

2

)
dy =

∫ 2

√
2

(
8y − 2y3

)
exp

(
y2
)

dy

=
∫
√

2

2
(
4 − y2

)
exp

(
y2
)

2y dy =
∫ 4

t=2

(4 − t)et dt =
[
(5 − t)et

]4
2

= e4 − 3e2,

and

I2 =
∫

B2

4y2 exp
(
y2 + x

)
dx dy =

∫ √
2

1

{∫ ln y

ln( 1
y )

4y2 exp
(
y2
)

ex dx

}
dy

=
∫ √

2

1

4y2 exp
(
y2
) · (y − 1

y

)
dy =

∫ √
2

1

(
4y3 − 4y

)
exp

(
y2
)

dy

=
∫ √

2

1

(
2y2 − 2

)
exp

(
y2
) · 2y dy = 2

∫ 2

1

(t − 1)et dt = 2
[
(t − 2)et

]2
1

= 2e.

Summarizing we get∫
B

4y2 exp
(
y2 + x

)
dx dy = I1 + I2 = e4 − 3e2 + 2e.

 Transformation of a plane integral


