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Calculus 2c-5 Preface

Preface

In this volume I present some examples of plane integrals, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
13th October 2007
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Calculus 2c-5 Plane integrals, rectangular coordinates

1 Plane integrals, rectangular coordinates

Example 1.1 Calculate in each of the following cases the given plane integral by applying the theorem
of reduction for rectangular coordinates. Sketch first the domain of integration B.

)fB )dS where B = {(z,y) | 1<2 <2090 <y< 23}
)fBl dS where B = [0,1] x [0, 1].

3) [z(xsiny —ye®)dS, where B = [—1,1] x [0, g}
4) fB \/WdS, where B = [—1,1] x [0,2].
5) [5(z?y? 4+ x)dS, where B =[0,2] x [-1,0].

6) [g |y|cos dS where B =0,2] x [—1,0].

) ‘/‘Bﬁds7 whereB:{(x,y)|O§x,0§y»x+y§1}

8) [p(4—y)dS, where B={(x,y) |0 <=z, 0<y, 2> +y* <2}

9) fB(\/_ —y%)dS, where B is the bounded set in the first quadrant, which is bounded by the curves
y =22 and z = y*.

10) [ xcos(x +y)dS, where B is the triangle of the vertices (0,0), (0,0), (w,0) and ().

1
11) fo\3/1+y—y2+§y3dS, where B ={(z,y) |0<z,0<y, x+y <1}

12) [5(3y? + 2xy)dS, where B ={(z,y) |0 <z, 0<y, x+y < 1}.
A Plan integrals in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

0TG5 ™15 225 3
x

Figure 1: The domain B of Example 1.1.1.
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Calculus 2c-5 Plane integrals, rectangular coordinates

I 1) We get by the theorem of reduction,

. 1 2 z3 1 2 1 23
/72015 = / / s dy dw:/ { } dx
J (x+y) J o (@+y) J1 T+Yl,—o
2 1 1 (1 1
[rmtatte= [ {3+t ypde
1 x+axd 1 x 1+22 =

- [eer-20)
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Calculus 2c-5 Plane integrals, rectangular coordinates

-0z 0 02 04 0% 08 12

-0.2

Figure 2: The domain B of Example 1.1.2.

2) We get by the theorem of reduction,

. 1 L, 1
— = [ [n(1 1
/]31+xde /0{/0 1+mydy}dﬂ: /0[11( —|—xy)]y_0dx

1 -
/0 1-1n(1—|—x)dm:[xln(1+x)]0—/0

dx

14z

1
1
= ln2—/ {1——}d33:1n2—1—|—1n2

= 2In2-1.

0.8

0.6

0.4

0.2

-0.2-

Figure 3: The domain B of Example 1.1.3.
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Calculus 2c-5 Plane integrals, rectangular coordinates

3) We get by the theorem of reduktion,

™

o [y (=D)L
- —%zsmm ( _me-1 1)> ,

where we first integrate with respect to  and then with respect to y.

0.54

Figure 4: The domain B of Example 1.1.4.

2

4) Here, the curve y = ¢ may cause some troubles. For symmetric reasons

/B\/stz/ll{/:mdy}dx
_g/ol{Amedy+ijdy}dm

x? 2 2
] + [—(ylﬂ)g} dx
y=0 3 y=u2
3

:2/01{§(a:2)3+§(2—x2)3}d:c:%/le3dx+§.2\/§/ol{1— <%>Q}de

1
/ {1—12)2dt = —+—/ {1 —sin?u}? cosudu

16 1 16 1 2
+ — cosudu-—+— 4 M du
3 Jy 3 3 Jo 2

1

37"

1

3

:%4—%/04 {1—}-2608211,4—%}(&1,
1
3
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Calculus 2c-5 Plane integrals, rectangular coordinates

0.4

0.2

0.2

-04

-0.8]

Figure 5: The domain B of Example 1.1.5 and of Example 1.1.6.

5) Here,

[ @ +ayas - /{
z/OQszy?’—&-xy

1$3+1x22 § 4 8 26
9 27 ], 9 2

(z y2—|—x)dy} dx

| I
Qﬁl o\
L
ISH
8
I
O\M
—
W =
8
o
+
S
—
ISH
S

6) The domain is identical with that of Example 1.1.5. It follows that

0 2 270
T T Y 4 1. w2 2
T as = [ (—y)dy- e = | =L ._[ _}:_,
/B|y|cos 1 S [1( y) dy /0 cos - dx { 2]_1 il I Pl

0.2

Figure 6: The domain B of Example 1.1.7.
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7) Here,

2 1 11—z 2 1 2 11—z
/5372655:/ {/ %dy}dm:/ {_L} da
p(l+z+y) 0 o (d+z+vy) 0 l+az+4+yl,o

1 2 2 1 2

:/ ro_r d.r:/ x—l—}—;—x— dx

o (1+= 2 0 z+1 2

1

z? B0 1
= | —z+In(1 2 =2 —142mn2—
{2 z+1In(l+2x) 6}0 5 +2In 5
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Calculus 2c-5 Plane integrals, rectangular coordinates

-02"0 02 04 06 08 1 12 14 16

0.2

Figure 7: The domain B of Example 1.1.8.

8) The domain is a quarter of a disc in the first quadrant, hence by combining the method of
identifying obvious areas and the theorem of reduction in rectangular coordinates,

/B(4—y)dS=4area(B)—/Oﬁ{/mydy}dxzzl.iﬂ(ﬁy_/oﬁ Byr“Lszax

0 =0

2 3
ALTERNATIVELY we get by using polar coordinates instead, cf. Example 2.1.1,

—27rE/ﬁ(sz)dx—Qﬂﬁ+l(\/§)3—27r2\/5.
. 6

z V2
/(4fy)dS = 4area(B)f/ {/ gsincp~gdg}dg0
B 0 0
27 + [cos | - {'93]

2

0

-0z 0 02 04 06 08 i

0.2

Figure 8: The domain B of Example 1.1.9.

9) When z = y* in the first quadrant, the inverse function is given by y = 2z, and it follows by
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Calculus 2c-5 Plane integrals, rectangular coordinates

the theorem of reduction that

:/1{x3_1mz_$;+1xs}dx:{z éxz_zm;ﬁxq 8 2.1
0 3 3 3.7 7 17 ], 21 7 21
_1
-1

Figure 9: The domain B of Example 1.1.10.

10) The domain is the triangle bounded by the X-axis, the line z = 7 and the line y = . We get
by the theorem of reduction,

/Bmcos(x +y)dS = /Oﬂ {/wacos(x +y) dy} de = /Oﬂ[scsin(w +y)ly—oda

e ) ) 1 ™ ™ 1
:/ {zsin2zx —zsinz}de = [—m§ cos2x+xcosx] —I—/ {5 cost—cosx} dx
0 0 0

737‘(

5

s 1 . .
= —— —7mT+ |- sin2x —sinz| =
2 [4 ]0

11) Here, the idea of first (i.e. innermost) integrating with respect to y for fixed z is stillborn,
so we interchange the order of integration. We shall therefore first (innermost) integrate with

Download free books at BookBooN.com
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Plane integrals, rectangular coordinates

-0z 0 02 0.4 06 08 1 12

027

Figure 10: The domain B of Example 1.1.11 and of Example 1.1.12.

respect to x and then outermost with respect to .

1 2oty 1
/w§/1+y—y2+—y3d5=/ / wqlty—y*+ oy
B 3 0 0 3

1 ! 2 1 3 % 2
== lty—y +5y°p (1-y)dy

1t (4 1, )
== (P -3+ 3y —
2/0{3+3(y v+ 3y

s[5} o) =33
@G- )k

(y—1)*dy

—
~—
—

ol

} dx} dy

12) The sketch of B is identical with Example 1.1.11. We get by the theorem of reduction,

/B(?)y2 + 2xy) dS = /01 {/Ol_y(?)y2 + 2zy) dx} dy

1 1
=/ {3y2(1—y)+y(1—y)2}dy=/ {3y> =3y +y— 202 +y°} dy
0 0

1
1 1 1 1
2 3
= —2 d = — 7—2-7:—.
/O(y—ky y°) dy 5+ 3 173

14
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5 5

Example 1.2 Let B be the rectangle [0, 2] x [Z’ 3

1
[
B Y +snx

in two ways, and then show the formula

27 .
/ In m dr =27 In g .
0 5+ 4sinx 8

A Plane integral.

} . Reduce the plane integral

D Reduce the plane integral in two different ways as double integrals, and then just compute.

I First note that the domain of integration is given by

5
y+sinx >0 and y21>1.

Then we reduce the plane integral in two different ways as double integrals,

1 2 % 1 % 2m 1
——dS = ———,dy pdxr = ————dz ; dy.
BYt+snzx 0 s Y +sinx s 0 Yy+sinzx

universities foster these qualitie

close to the latest ideas and glo
SI - Whatever your career goals
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Plane integrals, rectangular coordinates

By using that sinx is periodic, an

/

4

3

o

3 s

2m 1
0 Yy+sinz s

x
d then introducing the substitution ¢ = tan > we get
T

UL o

3
< Y+sinz

1

gt

- 2 .
7 ysin® 5 + 2sin

x

dx y d
5 cos g +ycos? 3 } 4

% +oo 1 %1 400 1
= —5 o dtpdy =2 — — 5 du,dy
2 Voo U +2Y+y s Y | Jooo wr S+
5
31 “+o0 1
= / - / 5 du p dy
ERNTI [ 1 1
Y Y
1 oo
5 U+ — 5
51 1 3 1
:2/ — i Arctan yl dy = 2m > dy
5 5 _
: Y 1-— 1- = 1 y= =1
Yy Y U=—00
5 2 2
:277{111(:1/—"-\/3/2—1)}3:277 In §_|_ 5 ~1] =-n §_|_ 5 _1
2 3 3 4 4
5 4 5 3 3
:2ﬁ{ln<§+§)—ln(i—l—Z)}:27r{1n3—1n2}:27r1n(§>.
On the other hand,
27 3 1 27 5 2 §—|—sin:v
/ / —dy dacz/ [1n(y—|—sina:)]37§dac:/ In (§7> dx
0 s y+sinx 0 Y¥=1 0 1 tsinx

4

3

o {n

) +In (
As a conclusion we get

/ dS =2rln <é> +
B 3

Finally, by a rearrangement

/ T ( ) du2n {m

as required.

1
y+sinz

5+ 3sinx
54+ 4sinx

5+ 3sinx
5+4sinx

5+ 3sinx
544sinx

e ()« o
[ulis) ()
(2)-»(2))-n )

)as

54 3sinx
54+ 4sinx

4

3
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Plane integrals, rectangular coordinates

Example 1.3 The unit square E = [0,1] x [0,1] is divided by the straight line of equation y = x into
We define a function f : E — R in the

two triangles: Ty given by y < x, and Ty given by y > x.

following way:

x2+2y, (l’,y) €T17
flz,y) =
1+ 3y, (,y) € To.

Compute the plane integral [, f(x,y)dS.

A Plane integral.

D Reduce over each of the sets Ty and T. The plane integral can be reduced to double integrals in
2 x 2 = 4 different ways, of which we only show one.

02

Figure 11: The triangle 7} has an edge along the X-axis, and the triangle 7% has an edge along the

Y -axis.

I From

T, = {
T = {(

(z,y)|0<2<1,0<y <z}
z,y) [ 0<y <1,0<z <y},

follows (note the two different successions of the order of integration)

[E feyds = [ fy)ds+

T

T

f(z,y)dS

/01{/Ow(x2+2y)dy}dx+/ol{/Oy(1+3y2)dx}dy

1 1
= /0 [2%y + yz]izo dx + /0 [z + 3y°z] Z:o dy

1 1
= / (x3+x2)dx+/ (y + 3y*) dy
0 0

1
= / (463 + 2 +t) dt = [t4+
0

3

1 1
—t3+—t2]

2

1

0

17
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Calculus 2c-5 Plane integrals, rectangular coordinates

Example 1.4 Let D be the set which is bounded by the curve y = e”, and the line x = 1, and the
coordinate axes. Sketch D, and compute the plane integral

1
—dS
/D (14+y)2cosha
A Plane integral in rectangular coordinates.

D Sketch the domain and apply the theorem of reduction.

0170270470608 1 1214

I When we reduce the plane integral, introduce the substitution v = e*, and apply a decomposition,

we get
R = e M T e e
(1+1y)%coshx o coshz |/, (1+7y)? 0o e +1] 1+yl,
/1{ 2 1 }dx:/e{ 2 2 }du
o lez+1 e2$+1 et +1 1w+l (W4 1)(u+1)
2 1
/{ +1 1 (u2+1)(u+1)+u+1}du
/{ 2 u?+1-2 }du
R )
2
gAtoe

U+
+
u+1 (w> 4+ 1)(u+1
u 1 1, 1
:/1 {u2+1+u2—|—1_u+1}du: [Arctanu+§ln(u —|—1)—§ln(u—|—1)

Arcta 7r+11 e?+1 11 1+1
= Arctane——+-In| —— | —-In|{ ———
TaT M\ (ernz) 2 \ar2)

u?

—

+ L 1y
— m
u—|—1 w2 4+1 wur4+1

e

1
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Plane integrals, rectangular coordinates

where we also can obtain the equivalent results

1 | 2(e? +1)
——dS = Arct ——+4+-ln|(—=
/D(1+y)2cosh3: S retan e gty n((e+1)2)
T cosh1
= Arctane— — +In| ——5—
I n e 4 n(cosh2%)

1+ coshl

= Arctane_£+ln( 2cosh 1 )
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Calculus 2c-5 Plane integrals, rectangular coordinates

Example 1.5 The function f: Ry x Ry — R is given by

2?2 —y?

flz,y) = m

Note that the domain of the function is the open first quadrant. By the computations of integrals we
shall whenever necessary use a continuous extension to the axes.

1) Compute the double integrals

11:/01{/01f<x,y)dy}dx og Igz/ol{/olf(x,y)dx}dy.

2) It follows from 1) that Iy # Iy. Make a comment on this result by considering the plane integral
of the function f over the unit square [0,1] x [0, 1].

A Double integrals.
D Compute I7, and apply that I = —I; by an argument of symmetry.
I 1) We get when x # 0,

1 1 2 2 1
e —y d y 1
/of(x’y) Y /0 (@ 1422 " /0 dy <$2+y2> YT T
SO

1 1 1
1 s
11:/0 {/0 f(x,y)dy}dx—/o mdm: Arctanlzz.

From f(y,x) = —f(z,y) follows by interchanging the letters and by a small argument of
symmetry that

I, = /Ol{Alf(xvy)dm}dy/OI{/OIf(y,I)dy}dw
- /01{/01f<x,y>dy}ng¢h.

2) The plane integral f[o 12 f(x,y) dxdy is improper at (0,0), and it is not convergent. If e.g.

D_{(x,y)€[0,1]2 ‘ y<%x},

then

22— g2 22— 1.2
7 __dzdy / — 4" dzdy
/D (22 + 42)2 p (z2 + %xz)z

Y

and D C [0,1] x [0,1].
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Calculus 2c-5 Plane integrals, rectangular coordinates

Example 1.6 Find the domain B for

flx,y) = V1 -2 —y? + /22y

Then find the range f(B) and the plane integral

/Bf(:v,y) ds.

A Domain, range and plane integral.

D Use the standard methods. When we calculate the plane integral we neglect the zero set.

-05

Figure 12: The domain B. Notice the interval on the negative Y -axis.

I The function is defined and continuous when 2 + y? < 1 and 22y > 0. From the first condition
follows that B is contained in the closed unit disc. From the second condition follows that if x # 0,
then y > 0; however, if 2 = 0, then 22y = 0 for every ¥, so the latter term is defined in union of
the closed upper half plane and the y-axis.

The domain is the intersection of these closed domains, i.e. union of the closed half disc in the
upper half plane and the interval [—1,0] on the y-axis, cf. the figure.

Since f is continuous in B, and B is closed and bounded and connected, then f has a maximum
value S and a minimum value M in B (second main theorem), and by the first main theorem the
range is connected, so f(B) = [M, S].

We shall search the maximum and the minimum among:

1) the interior points, where f is not differentiable (the exceptional points: x =0 and 0 < y < 1),
2) the interior stationary points (i.e. inside the set 22 +y? < 1, y > 0, z # 0),

3) the boundary points.
)

1) The restriction of f to x =0 and y €]0,1] is

oly) =v1-y%  yelo1]

This function is decreasing and of the range |0,1[, so it has neither a minimum value nor a
maximum value.

Download free books at BookBooN.com
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Calculus 2c-5 Plane integrals, rectangular coordinates

2) If (x,y) is a stationary point in the open quarter disc in the first quadrant, then (—z,y) is
clearly a stationary point in the open quarter disc in the second quadrant, and wvice wversa.
Now, f only contains z in the form z2, so the value is the same, f(z,y) = f(—z,y). It will
therefore suffice to consider the quarter disc

{(z,y) [2>0,y>0, 2> +y* <1}
in the first quadrant. We have in this subdomain,
flay) =vV1-—a? —y> +ayy.

The equations of possible stationary points are here

of x B
%77\/1—x2*y2+\/§70’
g Y 1 =z

= 7—’———:
dy Vi—z2—y2 2.y

and it follows from x > 0 and y > 0 that

0,

Ty

1 22
T:ﬁ??_%@_2ﬂ7

1 1
Hence y? = = 22, so y = +——= z. But then

2 V2

hence by a rearrangement,

b V2 2
2 Yi .20
ey

The solutions are z = —v/2 (must be rejected because we are only considering points of the unit

ﬁl)

1 1
HT=3 Clearly,

V2

is an inner point of the domain, so it is a stationary point. Then by the above,

2
disc in the first quadrant) and x = g, corresponding to y = 33
V2 1),
—— = ]i
373
also a stationary point, and these two points are the only stationary points. The value of the
functions is here

ot RUURERE RS RN ERR e e
f<i?§>— S R e e A a S

3) The examination of the boundary is split into

S

a) The circular arc, 22 +y?> =1, x € [-1,1], y € [0, 1].
b) The line segment on the X-axis, y = 0, z € [-1,1].
c¢) The line segment on the Y-axis, x =0, y € [-1,0].
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a) Since f(—x,y) = f(x,y), it suffices to consider the quarter circular arc 22 =1 —y? x > 0,
y > 0. The restriction of f becomes

o) =0 -2 y=vy—y3,  yelo1]

2

Since ¢ and ®(y) = ¢(y)? = y — y* attain their maximum value and minimum value at the

same points we compute

1
' (y) =1 — 392, hence ®'(y) = 0 for y = —.
) y (¥) V=73

2
Correspondingly, x = :I:\/; , and

At the end points

S

[f(=1,0)=] f(1,0)=0 and f(0,1)=0.

o
Qacha?

it’s an interesting world

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

= www.careersinbritishintelligence.co.uk

T0P 100 [

s PRI

Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.

D&

Download free books at BookBooN.com

23


http://bookboon.com/count/pdf/346353/23

Calculus 2c-5 Plane integrals, rectangular coordinates

b) When y = 0 and = € [—1, 1], the restriction of f is given by

f(z,0) =1 — 22, x e [-1,1],

which clearly has its maximum value f(0,0) = 1 and its minimum value f(—1,0) = f(1,0) =
0.

¢) When z =0 and y € [—1,0], we get
FO,9) =V1-92  ye[-1,0]
with the maximum value f(0,0) = 1 and the minimum value f(0,1) = 0.
It follows by a numerical comparison that the minimum value is attained at the boundary points
M = f(1,0) = £(0,1) = f(=1,0) = f(+,—1) =0,

and the maximum value is attained at the stationary points,

V2 1 V2 1 42
Szf(?@>:f(“§5):gﬁ~

According to the first main theorem for continuous functions the range of the function is connected,
thus

_ _ o V2
ﬂmMﬂPMA~

We shall finally compute a plane integral. Since f(z,y) is continuous on B, and the interval on
the Y-axis in the lower half plane is a null set, the integral is zero over this part.

Let B denote the closed half disc in the upper half plane. Then we get by reduction in polar
coordinates

/Bf(a;,y)dS - /B{erM}ds
= /Oﬂ{/ol(\/1—92+\/926082s0-gsin<p)Qd@}dw

1 N z 1
= g/ (1-0%)°2 Qng—i-Z/ |cos<p|\/sin<pdcp-/ 0% do
0 0 0
1 x 1
™ 2 3 2 3|2 2 =z
B T [P L
2|: 3 0 3 =0 7 0=0
T 2+2 2 2_7T+ 8
23 3 7 3 21
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Calculus 2c-5 Plane integrals, rectangular coordinates

Example 1.7 Calculate the plane integral

/ 3zy dx dy,
B

where B is the closed set in the first quadrant, which is bounded by the parabola of the equation
y =4 — 422 and the coordinate axes.

A Plane integral.

D Sketch the domain and compute the plane integral.

~030.20.40.608 1 1.2

X

Figure 13: The domain of integration B.

I We get immediately,

1 4—4z? 3 1 )
/Smydydx = 3/ x / ydy dm:—/ x(4—4x2) dx
B 0 0 2 Jo

3 1! ) o
= —16-- [ 1—-t)dt=12 | v du=4.
2 2Jo 0

Example 1.8 Let B denote the bounded set in the (X,Y)-plane, which is bounded by the line y = x
and the parabola y = x2. Compute the plane integral

/ 22y dzx dy.
B

A Plan integral.

D First sketch B.

I Since
B{(m,y)\nggl,ngygx},

the plane integral is reduced to

/zdd /12/””(1 p 1/12[2]950[ 1/1(4 6) d 1/1 1 1
X X = e €r = — x Tr = — ) — r = — _ = .
e = L7 2 ), © W e 2 /s 2\5 7)) 35
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Calculus 2c-5 Plane integrals, rectangular coordinates

Figure 14: The domain B.

Example 1.9 Let the set B be given by the inequalities

x>0, y>0, “4+Y%<q.
a h

where a and h are positive constants. Sketch B, and then compute the plane integral

J:/x3de.
B

A Plane integral.

D Follow the guidelines and apply one of the theorems of reduction.

-0.2

Figure 15: The domain B when a =2 and h = 1.

I Since the integrand contains y of lower exponent than x, it will be easier first (i.e. innermost) to
integrate vertically with respect to y, i.e. for fixed =z,

ogyghﬁ—fy 0<z<a.
a
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Then by means of the theorem of reduction in rectangular coordinates,

a h(1-%) a 2 2
J = /acgde: z3 / ydy :/ x3.h_<1_f> dx
B 0 0 0 2 a

h? [ 2 1 h?
= _/ x3<1__$+—2$2) der = —
2 Jo a a

n? [z* 2 5, L sl h?
= —|———=x — T = —
2 |4 ba 6a2 0 2

h24

15-24+410 1

@ 2 1
<x3——x4+—2x5) dx
0 a a

2 1
a——ga4+6a4>

h2a.

_ Ml 2 1) Rl 15—
T2 \4 5 6) 2 60

120

If we ALTERNATIVELY first integrate horizontally with respect to z, i.e.

ngga(l—g),

0<y<h
h =y=n

then we get by another theorem of reduction in rectangular coordinates, where we apply the

substitution t =1 — N

[avas= [y (d)

1 4h2
/ o “h(1—t)-t* hdt =
0 4

<
I

Brain power

Yy =h(1—t)and dy = —hdt,

—<>

G G A U
4 5 6/) 120
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Calculus 2c-5 Plane integrals, polar coordinates

2 Plane integral, polar coordinates

Example 2.1 Compute in each of the following cases the given plane integral by applying a theorem
of reduction for polar coordinates. First sketch the domain of integration B.

1) [5(4—y)dS, where B is given by x >0, y >0, and z* + y* < 2.

2) [gla+y)dS, where B is given by 0 < ¢ < g and 0 < o < acos .

3) [gv/a? —x? —y*dS, where B is given by —

4
4) [5xydS, where B is given by 0 < ¢ < g and 2cosp < o < T+ cosg

l\-’>|=l

<p<—-—and0<po<acosp.

ol

5) fB o +yx)z;2y)+y ) dS, where B is given by 0 < ¢ < Z and cos p < p < cos @ + sin .

6) [5 \/ﬁ dS, where B is the disc K((0,0);a).

7) fB dS, where B is given by —m < ¢ < m and bexp(acosp) < o < 1, and where
furthermoyre)b <e ?.

8) fB x2—|—y2) = dS, where B is given by —m < ¢ < 7w and 1 < o < bexp(acosyp), and where
furthermore b > e®.

9) [5(x* —y?)dS, where B is given by — % @Sg and 0<o<a

10) [5 /@ +y?dS, where B is given by — g @Sgand()gggacosgo.

11) fode, where B is given by 0 < ¢ < — and a < o < 2a cos? ¢.

N

A Plane integral in polar coordinates.
D Sketch the domain and apply the theorem of reduction.

I 1) This example is the same as Example 1.1.8. We shall only use polar coordinates in the present
case.

In polar coordinates B is described by
0<p<Z, 0<e<V2

From the theorem of reduction in polar coordinates follows that

2o
/(4—y)dS:éjtaurea(B)—/2 {/ gsing0~gdg}d<p
B 0 0
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Calculus 2c-5 Plane integrals, polar coordinates

-02"0 02 04 06 08 1 12 14 16

Figure 16: The domain B of Example 2.1.1.

0.6

0.4

0.2

-0.2 0 02 04 06 08 1 12

Figure 17: The domain B of Example 2.1.2.

2) From 0 < p < a cos p follows that
0< 92 = z? +y2 = apcosy = azr,

so the domain is a half disc in the first quadrant of centrum (g,O) and radius g. By the

reduction formula in polar coordinates,

1 an 2 5 a cos ¢
/(a—i—y)dSza-area(B)—i—/de:a-§~7T(§) +/ {/ Qsinap-gdg}dgo
B B 0 0
a

3 z 1 a cos ¢
:7-[-0474»/ 7Q35in80 dgp:7+i COS390'Sin90dSD
8 0 3 0=0 8 3 0

3 3 1

S PR A . R
=3 12[005 <p]0 a <8+12>'

3) Here B is the disc of centrum (%0) and radius %, cf. Example 2.1.2. From the reduction
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Calculus 2c-5 Plane integrals, polar coordinates

Figure 18: The domain B of Example 2.1.3.

formula in polar coordinates follows that

/\/ — 22 —y2dS = /{ \/a2—92-gd9}d<p
= 0

s a cos ¢ 9 z 2 ) )
} dgo—g/ {(a — (a® — a®cos? p)2 }d<p

=2/j -y )

a cos ¢

W
N)\DJ

0=0
2 2 5 %
:3 {a —a*(1 —cos?p smgo}dQO—g 1—cos @) dcosg
a2 { 1 4 }g a4 o ad
=— +Za%|cosp— = cos®p =— ——a =—Br—4).
3 3 3 oo 3 9% T

o

Figure 19: The domain B of Example 2.1.4.

4) From 2cos p < o follows
22 = 2pcos ¢ < p? =z + 9>,

which is rewritten as the inequality (x — 1)? 4+ 2 > 1 for the complementary set of the disc of
centrum (1,0) and radius 1.
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4
From o < —— follows 9+ pcosp = o+ < 4, ie. 0 <4 —x, 50 x < 4. Under this
1+ cosep
assumption we get by a squaring that o? = 22 + y? < (4 — x)2, hence
y? < (4—x)* — 2% =4(4 - 22) = 8(2 — z),
from which follows that we shall also require that = < 2, because y2 > 0.

The domain is bounded by the parabola y? = 16 — 8z and the circle (z — 1)? +»? = 1 and the

tow lines ¢ = 0 and ¢ = g
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Calculus 2c-5 Plane integrals, polar coordinates

Then by the theorem of reduction in polar coordinates followed by the substitution u = cos ¢,

3 Treoss 5 .
/acde = / / o’ sinp - cospdp p dy
B 0 2cos ¢

1 /g . 44 24 4 d
= - sing - cos § ——— — 2 cos
4 preosy (14 cosp)* R

5( 64 164 1-1
= / { ki 4 —4cos5w}sin<pdg0:/ {M—Mﬁ}du
0 1+cos<p L (u+1)
1
4
/ 6 —4u° S du
u—i—l C(u+ 1)1
1 1 64 4 "
— +_.—f_u
T2 u+1 3 (u+1)3 6 s
B 72+1 6472+32 1 64+2 1
o 4 3 8 3 2 3 3 64
- 8+8 2+128 512+ 1 - 6+1252_512+ 1
B 3 3 9 81  3-32 81 3-32
_640—486+ 1 _@+ 1 154-32+427 4955
B 81 3-32 81 3-32  32.-81 2592

0.8

0.6

04

0.2

04 62 0 02 04 06 08 1 12

Figure 20: The domain B of Example 2.1.5.

5) Here the condition cos ¢ < p implies that
pcosp =x < ,92 =z —+—yz7

which we rewrite as

1 1
and we are describing the complementary set of a disc of centrum (5, 0) and radius 3
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The condition g < cos ¢ + sin ¢ means that
2_ .2, 2 Sy —
o =2ty < ocosp+osing =x+y,

which is rewritten as
e Y (oY (LY
2 Y73) =27 \2)

11 1
This inequality represents a disc of centrum (5, 5) and radius E Asalso 0 < ¢ < %’ it is

now easy to sketch the domain B.

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b
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Calculus 2c-5 Plane integrals, polar coordinates

Then by the theorem of reduction in polar coordinates,

/ z(z +y)
B (202 +y?)(a? +42)3
% cos p+singy 2 .
0°(cos ¢ + sin p) cos ¢
:/ / z( 2 2 5 -0doodp
0 cos ¢ o (2COS (p—"_Sln @)Q

/Z (cos ¢ + sin ) cos @ { 1]605“”5““0
Jo 2cos2p+sin?ep 0

dp
0=CO0s ¢

T cos p +sinp cos ¢ T sin %)
= ) - -2 dw = 2 dgﬁ
o l2cos?p+sin“p  2cos?p+sin”p o cosZp+1

= [~ Arctan(cos gp)]o% = Arctan 1 — Arctan (?) = g — Arctan <§> .

6) The disc K((0,0);a) is described in polar coordinates by
—T<@<m, 0<p<a.
We shall here omit the sketch of the well-known disc of centrum (0, 0) and radius a.

Then by an application of the theorem of reduction in polar coordinates,

1 T 0 1
—dS:/ /7(1 do =27 |\Va? + 02| =2ra(vV/2-1).
/B\/a2+x2+y2 —n{ 0 vVa?+ 0? Q} ’ [ ’ }0 ( )

1
Figure 21: The domain B of Example 2.1.7, when ¢ =1 and b = %
e

7) The set is an annulus shaped domain which is neither nice in a rectangular description nor in
a polar description.
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Calculus 2c-5 Plane integrals, polar coordinates

When we reduce the plane integral it is fairly simple to get
s

™ 1
T 0 COos
/B(m2+y2)g - {/b (acosg) .ng} d(p:/ 005 - [0 €l expacon )4
-7 exp(acos ¢ -7

us

:/ cosgo{—lnb—acoscp}dgoz—a/ cos® pdp = —ar.

—T —T

D
S

1
Figure 22: The domain B of Example 2.1.8, when a = 3 and b = 2.

8) This case is similar to Example 2.1.7. We get

T bexp(acos )
/ %dS:/ / cosgodg dp = +am,
B (22 +y?)2 - | /1 4

because, apart from the change of sign, the computations are formally the same as in Exam-
ple 2.1.7.

-02 002 04 06 08 12

Figure 23: The domain B of Example 2.1.9.

9) The set B is a circular sector os shown on the figure.
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Then by the theorem of reduction,

/(x2—y2)dS:/ </ {Q2C082§0—@281H2@}ng) dy
B - 0
4

us
4

2 @ 1 Bl 1 4 4
:/_ (/0 cos2<p-g3dg>d<,0:[§ sin2<p] -%:5{0—(—1)}-%:&.

s kit
4 4

Figure 24: The domain B of Example 2.1.10.

10) From 0 < p < a cos ¢ follows that
0< g2 = z? +y2 = apcosy = azr,
. . a . a
so B is the closed disc of centrum (5, 0) and radius —.

Then by the theorem of reduction,

% acos ¢ CL3 % )
/ Va2 +y2dS = / {/ Q~Qd@}d<ﬂ——/ cos® p dp

i
2

w

3 % 1 Pl
= %/ (1—sin2<p)cosg0d<p:%{sin@—gsin3<p]

I
w| ],
o
N
—
|
W =
~__
|

S
Nejiie)
w
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0.2 x

Figure 25: The domain B of Example 2.1.11.

11) There is no nice rectangular description of the domain. It follows by the theorem of reduction,

2a cos® o]
/xde = / / pcosy - psing - odp p dy
B 0 1
% 2a cos? @
/ cos @ sin @ / 0% do dy,
0 a

ENE]

14 . 4. .8 4
= 1), cos ¢ - sinp [(2a)* cos® ¢ — a*] dy (t = cosp)
at 16 1,1
= — [ {16t —t}at= U
4 /7 6 } [10 27| .
vz vz
8
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Calculus 2c-5 Plane integrals, polar coordinates

Example 2.2 In each of the following cases a plane integral of a continuous function f : B — R is
written as a double integral. Sketch in each case the set B, and set up the double integral, or the sum
of double integrals, which occur by interchanging the order or integration.

1) Jy {J2 fay) dy} de.
2) fl{ 1” flx y)dy}dx.

5) IR
1) Jo {J° yrr S ) dy } da
5) fo { mf (x y)dx}dy.

Vao—a? flz,y) dy} dx.

) 1% { Jit Sta ey,

7 Jy {f S @) dm}dy.
9 B swas )y

A Interchange of the order of integrations in double integrals.

D Sketch the set B and set up the double integral in the reverse order. Notice that a nice description
in one case does not imply a nice description in the reverse order.

-0z 0 02 04 06 08 i 12

Figure 26: The domain B of Example 2.2.1.

I 1) The domain is given by
B={(z,y)|0<e<l 2’ <y<a}={(z,y) |0<y<Ly<a<yh
In fact, it follows from the inner integral that 2 < y < z, from which it is easy to derive

y<z <y
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By interchanging the order of integration we get

/01{/;f(%y)dy}dx:/ol{/yﬁf(x,y)dx} dy.

o j 05 1
-02

Figure 27: The domain B of Example 2.2.2.
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Calculus 2c-5 Plane integrals, polar coordinates

2) The domain is found in the same way as in Example 2.2.1. Tt is given by
B={(z,y)|[1<z<e,0<y<Inz}={(zy)|0<y<1 e’ <z<e}

hence by interchanging the order of integration,

/le{ 011195 flz,y) dy}dx: /01 {/ey f(:my)dx} dy.

Figure 28: The domain B of Example 2.2.3.

3) This domain is bounded by the circle (x — 1)? + y? = 1 and the straight line y = 2 — x, hence

B = {(z,y)|1<2<2,2—2<y<2—2?}

When we interchange the order of integration we get

/12 {Lff(x,y)dy}dx—/ol {lemf(ﬂc,y)dx}dy.

4) The domain is that part of the disc (z — 1)? +y? < 1 of centrum(1,0) and radius 1, which lies
in the fourth quadrant, thus below the X-axis, so

B = {(z,9)|0<2<2, —V2r—22<y<0}
= {(z,9) | -1<y<0,1—/1—-y2<z<1++/1—y2}

When we interchange the order of integration we get

AL oo [ nevafo
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x
05 1 15 2

Figure 29: The domain B of Example 2.2.4.

Figure 30: The domain B of Example 2.2.5.

3
5) The domain is bounded by the circle 22 + y? = 52 and the lines y = 0 and y = rha By the

alternative description we must cut the domain by the dotted line x = 4. Then we get the two
possible descriptions:

B

{(x,y) ’0§y§3, <z < 25—y2}

I
IA

3
{(a:,y) ’0 r<4,0<y< x}u{(x,y)4§x§5,0§y§\/25—m2}.

When we interchange the order of integration we obtain the following complicated expression

/03 {/;ﬂf(x,y)d:v}dyZ/O4 {/034 f(x,y)dy}derAS {/Omf(x,y)dy}dx.

In this case we get the sum of two double integrals by interchanging the order of integration.

REMARK. It follows from the form of the domain that it would be far more reasonable here to
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use polar coordinates, because B in these is described by
3
B=14q(0,)|0<0<50<¢p< Arctanz ,

and the integral is transformed into

Arctan 2 5
/O {/0 f(Q,w)QdQ} dp. 0O

Figure 31: The domain B of Example 2.2.6.

6) By inspection of the integral we see that the domain is given by

y?>—4
B{(x,y)‘GSySQ, 1 §x§2y}-

2

< z that y? < 4(x+1), and likewise we get from z < 2—y

It follows from the inequality Y

that y < 2 — 2. Whenever the square root occurs (here by |y| < 2v/z + 1), we must be very
careful! The figure shows that we have to split by the line z = 0, so B is written as a union of
two sets which do not have the same structure,

B = {(z,y)| -1<2<0, 2vVe+1<y<2Va+1}
U{(z,y) |0<a <8 —2vVa+1<y<2—uzx}.

When we interchange the order of the integration we get a sum of two double integrals,

/_26{/ij(:my)dx}dw/j{/_zgf(x,y)dy}dx+/08{/_ijf(:ay)dy}dw-

7) The domain is bounded by the unit circle in the second quadrant, by the X-axis and by the
line y + x = 1. It is natural to split in the two subdomains along the Y-axis, thus

B = {(z,y)|0<y<l —V1-y?*<z<1l-y}
= {(@y) | -1<2<0,0<y<VI-22 U< {(z,9) |0<e<1,0<y<1—a}.
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1.2

Figure 32: The domain B of Example 2.2.7.

Then by interchanging the order of integration,

/01 {/u%f(m,y)dx}dy:/i {/Omf@,y)dy}dw/ol {/O”f@,y)dy}dx.

Figure 33: The domain B of Example 2.2.8.

8) The domain is described by
B={(e.y)|0<a< /B2 0<y<3),

thus B is that part of the quarter disc in the first quadrant of centrum (0,2,) and radius 5,
which also lies below the line y = 3. When we interchange the coordinates we must cut the
domain by the line x = 4. Then B is written as the union of the two sets,

B={(z,y) |0<y<v25—22,4<2<5}U{(x,y) |0<2<4,0<y<3}

Then by interchanging the order of integration,

/03 {/()\/ﬂf(:c,y)dac}dy—/04 {/ng(x,y)dy}dx+/45 {/Omf(x,y)dy}dm.
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Example 2.3 Sketch the point sets
B={(z,9) |0<2<2,0<y<2 2y >2}
and
D={(z,y) |1 <2, 1<y, zy <2}

Then compute the plane integrals

1 1
/ —dS and / —dS.
B LY D TY
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Calculus 2c-5 Plane integrals, polar coordinates

A and D Sketch of a domain; computation of a plane integral.

0.5

Figure 34: The domain B.

0.5

Figure 35: The domain D.

I The domains are sketched on the two figures. We see that
BUD=1[1,2] x[1,2],

which may be exploited in one of the variants, because B and D have just one boundary curve in
common and are otherwise disjoint; cf. the alternative below.

From

B:{(x,y) ‘ 1<a2 <2,

follows that

1 22 21 ) 21 1 )
—dS = —dy pdx = — [Iny]2de = — Inzder=-(In2)".
B TY 1 2 Ty 1 T B 1z 2
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From

[\

D_{(xvy) ‘ 1<$<271<y<_}a
T

we get analogously

1 2 21 2
/—dS / / —dy da:z/ — [ny]y dz
D TY 1 1 Ty 1 X

2

| 1 1 1
= / —{In2 —Inz}dr = |{In2-lnz — ~(Inz)?| = (In2)? - =(In2)* = ~(In2)2
1 X 2 1 2 2
ALTERNATIVELY,
1 2d 2d 1 1 1 1
/ —dS = —x-/ —y:(1n2)2:/—dS+/—dS:—(ln2)2+/—dS,
BuUD LY 1 X 1Y B 1Y D TY 2 D LY
hence

1 _ 2 1 o _ 1 2
nyde(ln2) 2(1112) f2(1n2) .

Example 2.4 Let B be the domain in the first quadrant, which is bounded by the curves of the
equations

Y=, y = 4x, zy =1, Ty = 2.

Describe B in polar coordinates and then compute the plane integral

/BIZ exp(zy) In (%) ds.

A Plane integral reduced by polar coordinates.

D Sketch B. Then describe B in polar coordinates.

0 05 i 15 2
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I In polar coordinates the line y = 4x is described by ¢ = Arctan 4, and the line y = = by
@ = Arctan 1 = T
4
Since
xy = 0°singcos g,

the hyperbola xy = 1 is described by

1 T
= € [—,A cta 4}
¢ V/sin ¢ cos ¢ LA VR
and the hyperbola zy = 2 by
2 i
= € {—,Arctan 4} .
¢ \/sin p cos ¢ 7 4
Summarizing we get by the reduction of the plane integral in polar coordinates that
2 )
/ x” exp(zy) In (—) ds
B X
Arctan 4 2/+/sin p cos ¢
(1) = / / 0° cos® ¢ - exp (g2 sin ¢ cos @) In(tan p)odo ¢ de.
Arctan 1 1/+/sin ¢ cos ¢

First compute the inner integral by using the substitution ¢ = o2 sin ¢ cos ¢, where ¢ is kept fixed.
This gives

2/+/sin g cos
/ 02 cos? ¢ - exp (Q2 sin ¢ cos go) In(tan p)odo
1/+/singcos
_ Lin(tany) / S retdi— L Intane) o g2 _ ¢ In(tang)
2 sin“ep i 2 sin“g 2 sin®y

When this result is put into (1), it follows by the substitution u = tan ¢ that

Arctan 4
In(t
/xzexp@y)m(%)ds _ / In(tane) ,
B X

)
Arctan 1 sm- ¢

Arccot 1 1
Joo nteoti)) - ———di
Arccot 1 sm- @

1

1 62 1
/ Inudu = — [ulnu — ul{
1 2

o %o | % o[ T

1 11 e?
ALTERNATIVELY one may introduce the new variables

(u,v) = (my, %) .
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This transformation is considered in all details in Example 5.2, so we shall just mention the main
points, namely

D={(u,v) |1 <u<2 1<0v<4}=]1,2] x[1,4],
and

and y(u,v) = Vuv,

u
z(u,v) = p

and that the Jacobian is 2i
v

By the transformation of the plane integral

1 12 ‘1
/xQexp(acy)ln (Q) dS:/ E-e“lnv-—dudv:—/ ueudu-/ — Invdv
B T DU 2v 2/ ;v

1 1 11 1 In4 1 2
:—[ue“—e]?-[—ﬁ——] 2562{1—n———}:%(3—21n2),

which is far easier than the method above. ¢
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Calculus 2c-5 Plane integrals, polar coordinates

Example 2.5 Find the domain D of the function
f(:cay) =V a? — z? _y27

where a is a positive constant. Then compute the plane integral

/D (e, 9))? da dy.

A Domain of a function, plane integral.
D Analyze f. Compute the plane integral by using polar coordinates.
I It follows immediately that

D ={(z,y) | 2* +y* < a’} = K(0;0a),

and

/ {f () dedy = / {a® —o? — ) drdy
D K(0;a)

a 4
= a2-area(f(0;a))—27r/ g2~gdg:a2-7m2_27r.az:ga4,
0

Example 2.6 Let the point set B be given by

,r<y< ! }
cosT

B:{(x,y)€R2 ‘ 0<z<

S

Find the value of the plane integral

/ ydSs.
B

A Plane integral.
D Sketch the domain B and reduce to a double integral.

I By the reduction to a double integral we get

™

z 1/cosx z 1/cosx =
/de = /4 / ydy dx:/4 1y2 dx:1/4 ! — 22 Y dx
B 0 v 0 L2 2 Jy |cos?x
1
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Plane integrals, polar coordinates

14
12 /
1

Figure 36: The domain B.

Example 2.7 Compute the plane integral

/ ya? ds,
B

where B er is the quarter disc given by the inequalities

1<, 0 <y, x2+y2§2x.

A Plane integral.

D There are at least three different solutions:

1) Reduction in rectangular coordinates.

2) Reduction in polar coordinates.

3) Reduction in a translated polar coordinate system.

Figure 37: The quarter disc B.

50
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Calculus 2c-5 Plane integrals, polar coordinates

I First method. Reduction in rectangular coordinates.
The set B is described in rectangular coordinates by

B={(z,y) |0<y<+v2zx—22 zec[l,2]}

Hence
2 \/2w—m2 1 2 1 2
/yxzdS = / / yaz? dy dx:—/ x2{2x—x2}d:c:—/ {2x3—x4} dx
B 1 0 2/ 2/
1zt 2717 1 1 75-62 13
— T o1 - — {32 1) = =,
2{2 5}1 =1 =g {82 -1 = = 20

Second method. Reduction in polar coordinates.
It follows from the figure that every point in B lies in the angular space ¢ € [0, %} (den dotted
oblique line). We get the lower p-limit from a < 2 = pcos p,

1
<o
cos ¢

From o2 = 22 + 32 < 22 = 20 cos ¢ we get the upper o-limit o < 2cos ¢.
Summarizing, B is described in polar coordinates by

(0,¢) L 2cosp, ¢ € [O —}
COS .
Q? cos —_ Q —_ ) )

Hence by reduction in polar coordinates,

T 2cos p
/ yr?dS = / {/ gsingo-{gcosgo}Q-QdQ} dy
B 0 1

cos ¢

z 2 cos ¢ z 1 2cos p
= / sin ¢ - cos? @ / otdo by dp = / sin ¢ - cos® ¢ [— Q5:| dy
0 1 0 5 1

cos ¢ cos @

/ ! 32 cos’ ! npde— & =32 % cosdp— & . — !
cos’ @ — sin =—|-32-—cos®p— = ——
0 P cos? % v =y 8 P79 o2 %

T 1 1
= —-34 (— 8 — 1) | ——=+1
5{ syt Jr2< COSQ%+>}
1 1 1 115 1 1 13 13
= 24— r1)r (2 =22 b2 22
5{< 16+)+2( +)} 5{4 2} 5 4 20
Third method. Translated polar coordinate system.
As 2% + y? < 2z can also be written (z — 1)? + y? < 1, the set B can be described by

0

{@9) | 2=1+0cosp,y=osing, o€ 0,1, o€ [0.7] },
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where the pole lies in (z,y) = (1,0). Then we get the plane integral

z 1
/ yr?dS = / / gsinap-{l—l—gcosgp}zgdg} de
B 0 0

o 0 '
+ == cosp + — cos? sin @ dy
2 5 0=0

1 1, 1 5]
= [_§ cosw—zcos @—1—5cos <p]0
1 1 1,6 1 2 13
iITBETIT 15T w

Design your
own future at
MAN Diesel

www.mandiesel.com

MAN Diesel — Powering the World
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0
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Calculus 2c-5 Area

3 Area

Example 3.1 Let A be the plane point set which in polar coordinates is bounded by the inequalities
—-T<ep<m, 0<o0<1+cosep;

the boundary curve OA is a cardioid. Let B be the disc which is bounded by 0 < o < 1. Find the area
of the intersection AN B.

A Area of a set given in polar coordinates.

D Sketch the boundary curves. Then set up the integrals of the area and compute.

05 15

Figure 38: The intersection of the unit disc and the cardioid.

I By examining the figure we set up the formula of the area where we have a half disc in the right

half plane,
1 ™ 14-cos ¢ T 1
area(ANB) = §7r-12+2/ {/ ng}d(p:§+2/ 5(1+cosap)2d<p
3 /O 5

T T 1

= §+/ {1+2cos<p+§(1+cos2<p)} de

3

m 3r 1 e L x0T

= §+7-§+[251n<p]%+1[sm2<p]%—Z—Z.
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Example 3.2 In each of the following cases a plane and bounded point set B is given by the boundary
curve OB given in polar coordinates. Sketch B and find the area of B.

1) The cardiod,
Q:a(1+COS<)0), S [_ﬂ—vﬂ-]'

2) (A part of) Descartes’s leaf,

3a sin @ cos ¢ 0
‘Q:—. 3 3 5 SDE |:07_i|
sin” ¢ + cos? ¢ 2

3) (Part of) Maclaurin’s trisectriz,

4 1 E[ ™ 77}
=4a-cosp — Sl
e ¥ cosp’ ¥ 373

A Sketches of curves given in polar coordinates. Area by a plane integral.

D Sketch the boundary curve. Then apply the theorem of reduction.

0.5

Figure 39: The cardioid.

I 1) Cardioid, from Greek “n kapdia = the heart”, because the curve has the shape of a heart.
The area is given by

T a(l+cos @) ™ q
/ ds / / odp dgo:/ —a?(1+ cos p)? dyp
B -7 0 2
2 /7r

1 2 1 3 3
a {1—}—200890—}—%}(1@:§a2~§-27r:§a277.

1
2
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0.8

0.64

0.4

0.2

Figure 40: Part of Descartes’s leaf.

2) The area is here computed in the following way

m 3a sin @ cos @

P Sind cos3 1
/dS = /2{/ o H"ng}clsﬂzi
B 0 0

tan? ©- cos* ©
cos® (1 + tan® )2

9
_ 012
+o0 3 )

z
),
=-a’.

32l 1
2 1+ud], 2

sin? @ cosZ

z
9a? -
/0 (sin® ¢ + cos3 )2

2

/-‘rOO u2
u=tan =0 (1 + U3)2

du

-05

Figure 41: A part of Maclaurin’s trisectrix.

3) By the usual reduction the area is here computed in the following way,

51 2
/ 2{ —4acos<p} do =
-3

[ as
B

cos

3

2

a
Z.9
2

L 2
a’tant + 4sin 2¢]¢ = a® {tan7T +4sin7r} = a? (\/§+4~

™

I

|

—8+8+8C082(p}d(p

ﬁ) = 3Vv3d%.

cos?

3 2
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Example 3.3 Find the area of the plane domain B, which is bounded by (1) a part of Archimedes’s

spiral given in polar coordinates by
e=ap,  pel0,m],
and (ii) the part of the negative X -azis given by
(y=0 and z € [-7a,0]), or (¢=m andp € [0,7a])

A Area in polar coordinates.

D Sketch the domain; compute the area by reduction in polar coordinates.

I The area is

™ ap 71'1 9 9 1
dsS = odopdp = —a“p dp=—-a
B 0 0 0 2 6

2

™.

3
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4 Improper plane integral

Example 4.1 Check in each of the following cases if the given improper plane integral over the
bounded set B is convergent or divergent; indicate the value of the plane integral in case of con-
vergency.

dS, where B is K((0,0);1).

1) fB \/m

In( 2
2) fB%—gy)dS where B is given by 0 < x <1 and 0 < g
1
x)(1+x+y)2

) I

dS, where B is given by 0 <z, 0 <y, z+y < 1.
4) fB dS’ where B is [0,1] x [0, 1].

5) fB dS where B is given by 0 <z <1 and x <y < 1+ 22.

6) fB 2+ 2dS where B is given by 0 <z <1 and x < y < 1+ 22,

z? — y? e
") I (g 45 where B is K(0,0)51).

8) fB\/—dS where B s [0,1] x [0,1].

)fB dS where B is given by 0 < x <1, and 2% <y < z.

1

10) fBln <—x2 e

11) [pIn(1 — 22 — y?)dS, where B is K((0,0);1).

) dS, where B is K((0,0);1).

dS, where B is the triangle of the vertices (1,0), (1,1) and (0,1).

1
12 —_—
) e g
A Tmproper plane integrals.

D Sketch the domain. Indicate where the integrand is not defined. Then check where the function is
positive and where it is negative. Truncate in a suitable way and check if the limit exists. Notice
that if the integrand has the same sign everywhere in a dotted neighbourhood of a critical point,
then the truncation can be very simple, which does not have to be “small” in geometry (but of
course in area). If this is not the case one must be far more careful and split into the positive and
the negative part of the function.

I 1) The domain is the closed unit disc. The integrand is not defined at (0,0), and it is otherwise
positive (or zero) in B\ {(0,0)}.
Let B, = K((0,0);1)\ K((0,0);7), where 0 < r < 1. Then B, is described in polar coordinates
by

0 < ¢ <2, O0<r<o<l.
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Figure 42: The truncation of Example 4.1.1.

Then by the theorem of reduction in polar coordinates followed by interchanging the order of
integration,

1 27 1 1 1 27
S / {/ Mgdg}wp:/ {/ (QCOSSO+1)dSO}dQ
\/x2+y 0 r 0 r 0
1
= 27r/ do=2m(1—r),
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Calculus 2c-5 Improper plane integral

which clearly has a limit for » — 04, thus the improper plane integral exists and it has the
value

1 1
Tt lim LS — tim 2n(1—r) = 2m.

I gs— el
B /1'2 + y2 r—0-+ By A /1'2 + y2 r—04

0.6

0.4

0.2

Figure 43: The truncation of Example 4.1.2.

2) The integrand is not defined at (0,0) € B. Note that the integrand is negative elsewhere, i.e.

it has a fixed sign when (z,y) € B and 0 < z < 3 Thus we can choose the truncation

1
B, ={(x,y) € B|xz>1t}, 0<t<§.

We then get by integration over B,

In(xz + 2y) b 2 LS| *
A = | = 1 2 = — 1
/Bt .~ ds /t = /0 n(z 4 2y)dy p dx /t 572 /0 n(z + u)du p dx

|
- /t gl@+un(z+u) = (z + wli_ode

1
1 1
:/t ﬁ{i%xln(%‘)—2x—xlnx+x}dm:/t ﬁ{2xln2—|—xlnx—x}da§

1
In2 1 Inx 1 1
= 4+ —Ydr=—(2In2—-1)Int— ~(Int)?
/t{x 2x+2x}x 522 = 1)t =7 (nt)7,
which tends to —oo for ¢ — 04, and the improper integral does not exist.

3) The domain is the well-known triangle in the first quadrant. This time the integrand is not
defined at (1,0) € B. It is positive in the rest of B. We choose the truncation

By ={(z,y) € B|z < t}, 0<t<l.
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-0z 0 0.2 0.4 06 08 1 12

-0.2

Figure 44: The truncation of Example 4.1.3.

Then by integration over By,

1 1 t I 1
. ds = ——dy p d
/Bt (lI+z+4y)? 1-=z /Ol—m{/o (14+2+y)? y} *
bt 1 I b 1 1
o 1—= IL+z+y], o o l—z (14+2 2

b1 11 11 1 1
— z. . . dr = =[In(1 E= 2 1n(1+1).
/0{2 -z 2 Ttz 2 1—x} v =g+ =5 I +4)

The improper plane integral exists and it has the value

1 1 1 1 1 1
. dS = li . dS = lim —In(l+1¢)==-In2.
/,g;(l—i—:c—ky)2 1-a ey s (I+z+y)? 1—2 tir{l72n( +1) T

-0.2

Figure 45: The truncation of Example 4.1.4.

4) The domain is the unit square. The integrand is not defined at (0,0), and it is positive in the
rest of B. We can therefore choose the geometrical rather “large” truncation

B, ={(z,y) € B|xz>1t}, 0<t<l.
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The essential here is that the area of the removed domain tends to 0 for ¢ — 0+.

We get by integration over By,

1 1 1y 1
ds / {/ dy}dm/ In(1+x) —Inx}dr
/th+y t 0o Tty t{ ( ) ;

= [(z+1)In(1+x) —x—xlnx—i—x}tl =2In2—(t+1)In(t+ 1)+ tint.

Due to the rules of magnitudes, tInt — 0 for ¢ — 0+. Hence the improper plane integral exists,
and it has the value

1 1
/ ds = lim/ dS = lim {2In2 — (t+1)In(1 +¢) +¢tlnt} =2In2.
BT TY t—=0+ Jp, x +y t—0+

14
1.2 /

0.8
0.6
0.4

0.2

-2 0 02 04 06 08 1 12

-0.2

Figure 46: The truncation of Example 4.1.5 and of Example 4.1.6.

5) We consider the same integrand (and the same singularity) as in Example 4.1.4. We can
therefore choose the truncation

Bi={(z,y) |[t<z<lz<y<V1+a?},  0<t<l,

where we remove a strip along the Y-axis. Then by integrating over By,

1 1 Vitz? 1 1
/ dS:/ / dy dx:/ {In(z++V1+22) —In2 — Ina}dx
th+y t x x—|—y t

r—[In2-z+xnr— |}

1 1 T
I
t t 1+x
1
- ln2—tln(t+\/1+t2)—[\/1+t2] +(1-1n2)-(1—¢) —tInt
t
= 1-V2+V1+2—tln(t++/1+12) —tlnt —t(1 —In?2).

Due to the rules of magnitudes, t-Int — 0— for ¢ — 0+, so we conclude that the improper
plane integral exists and it has the value

1 1
/ dS:Iim/ dsS =2 — 2.
BT+Y t—0+ /g, T+ Y

= [:Uln(er 1+ a2
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6) The domain is the same as in Example 4.1.5, and the integrand is not defined at (0,0). The
integrand is positive elsewhere, so we can choose the same truncation as in Example 4.1.5.
Thus,

Bi={(z,y) |[t<z<lz<y<v1+a2?}, 0<t<Ll

Then

Y 1 VAR y 1 1 ) ) V14x?
— 2 4SS = ———dy pdv = —1 + d
/Bt z? +y? /t /z 2 /t {2 nle"+y )L—m !

1 1
= 5/ {In(1 +22%) —In2 — 2Ina}dr
t

1 I R 1
zi[xln(lJrQ:cz)]tfi/t 1+2x2dx7§ln2.(1ft)f[xlnxfx]%

1

1 Y22 411
:—ln3—§tln(1—|—2t2)—/ i
t

1
o A g M2 (=) + 1ttt —t

1
=—In

1 1 1
+1—=tIn(1+2t))+=n2-t+tlnt—t—1+*t+ |— Arctan(v2z
> ( ) > 7 ( )t

1 1 1 1
+ — Arctan V2 — 3 tIn(1 + 2t%) + 3 In2-t+¢-Int— 7 Arctan(v/2t).

V2 V2

2
1
1

J—

= —In

2
2
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It follows by taking the limit that the improper plane integral exists and that it has the value

y . Y 1. 3 1
———dS =1 ——dS=—-In—-+ — Arct 2.
/gx2+y2 t—l>r(§l+/3tx2_|_y2 2n2+\/§ reten V2

0.5

Figure 47: A subdomain with truncation in Example 4.1.7.

7) This is a vicious example which is constructed to mislead the reader to an erroneous conclusion.

The domain is the closed unit disc. The integrand is not defined at (0,0). The integrand is

both positive and negative in any dotted neighbourhood of (0,0), so we shall split it into a

positive part and a negative part! We shall here only consider the truncated quarter disc
BT:{<Q7@) ’_ZSQOS 7TSQ§1}7 O<T<1a

where the integrand is nonnegative. Then by a reduction in polar coordinates,

a? —y? i ' 0% cos2¢p 1 i .
/B(x2+y2)2ds - /_ {/T TQdQ}d¢=[§Sln2<ﬂ] - [In o]}

o ™
4 T

= ln%—>—|—oo for r — 0+,
so the improper plane integral does not exist.
WARNING. The careless reader may give the following solution: Choose the truncation
B. ={(0,0) |0<p<2m r<p<1}, 0<r<l.
Then we have the following correct computation,
/ MdS:/%COSQ@de/l@ =0,
B, (2 +y?)? 0 r O

for every r €]0,1].
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However, by taking the limit we only get what may be called the principal value,
2 2 2 2
=y . T —y
vp./idS: lim ——=dS =0.
B (z? +y?)? r=0+ Jp, (22 +4?)?

The improper plane integral does not exist as proved above, but the principal value does. In
some cases one may even give this a physical interpretation. We shall, however, not pursue this
aspect here.

0.2

Figure 48: The truncation of Example 4.1.8.

8) The domain is the unit square, and the singular point is (1,1). The integrand is positive
elsewhere, so we may choose the truncation

By ={(z,y)|0<z <t 0<y<1}, 0<t<l.

Then

R
[Zo-vime= [

S
1+viaz "

which clearly has a limit for ¢ — 1—, because the latter integrand is continuous in all of [0, 1].
Hence the improper integral exists. By introducing the substitution

u=+v1—-ua, z=1-—1u?
we finally obtain the value

2 i

1 1 0
/7d5 - /7@:_/ v
BV1i—uay o 1+vV1—=x 1 14w

! 4
/ {4——}du:4—4ln2.
0 1+u

2

du

9) The domain is bounded by the parabola y = 2 and the line y = z. The integrand is not
defined at (0,0), and it is positive elsewhere in B. Choose the truncation

Bi={(z,y)|[t<z<l,2*<y<az}, 0<t<l
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Figure 49: The truncation of Example 4.1.9.

Then

1 ]. T 1 1 .
ds = dy b dx = In(z? + d
[y = [y} [ b ols_oa

= /tl{ln(gcQ‘ +z) — In(22?)} do = /tl{lnx +In(l1+2)—1In2—2Inz}de

1

= /{ln(1+w)—lnx—ln2}d:ﬂ:[(1+x)ln(1+x)—x—xlnx+x—ln2ow]%
¢

= 2In2-m2—(1+t)In(1+¢)+tlnt+1In2-¢t.

This expression has a limit for ¢ — 0+, so we conclude that the improper plane integral exists
and its value is given by

1 1
/ 5 dsS = lim/ 5 dS = 1n2.
BT+ Y t=0+ Jp, ° +y

05

Figure 50: The truncation of Example 4.1.10.

10) The domain is the closed unit disc, where the integrand is not defined at (0,0). The integrand
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is otherwise positive. Choose the truncation
B.={(0,0) | 0< o <2m, r < o<1}, 0<r<l.
Then
1

1 Tt 2 1 2 2 2
'/Brln<m2+y2>d3 = /0 {/7 —In(o )ng}dgo%r {2{9 In(o”) + 0 } )

= 7+ar?in(r?) —r2

The improper plane integral exists and its value is

' 1 . ' 1
fym () s = g [, o (e 25 =

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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0.5

Figure 51: The truncation of Example 4.1.11.

11) The domain is again the closed unit disc. Here the integrand is only defined in the open unit
disc, where it is < 0 (fixed sign). Therefore we can choose the truncation in polar coordinates

B, ={(0,p)|0<p<2m,0<p<r}, 0<r<lL
Then

/BTln(l—xQ—yQ)dS = /O% {/Orln(l—QQ)-gdg}dcp

— QW/;O {;ln(l — 92)}d(1 - 0%

= —w[1-Am1 - - 1-P);
= —r{(1=r®)In(1—r?) — (1 —r%) +1}.

This expression has a limit for 1 — 72 — 04. We conclude that the improper plane integral
exists and it has the value

/ In(1 — 2% —y%)dS = lim In(1 — 2% —y*)dS = —.
B

r—1— B,
12) The integrand is positive everywhere in the interior of B. It tends to +oo, when we are
approaching the line  +y = 1 from above. Choose the truncation
Bi={(z,y) |0<2<1,0<y<l,z+y>t+1}, 0<t<l
Then

By 7\/$+1y*1 a5 = /tl {/11y+t \/ﬁﬁ} W= 2/: {m} ::1*9“ w
2/t1{\/§—\ft}dy=2[§y\/§—y\/5]l

- 2{§—ﬂ—§t\/5+t\/f}—>§

for ¢ — 04. We conclude that the improper plane integral is convergent with the value
4

/;dé’— lim/ ;dS—f
sVETy 1 oy Vrry 13

r=1—y+t
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Figure 52: The truncation of Example 4.1.12.

Example 4.2 Check in each of the following cases if the given improper plane integral over the un-
bounded point set B is convergent or divergent. In case of convergency find the value of the plane
integml.

1) fB dS where B is given by x > 1 and v <y < Va2 +
2) fB dS where B is given byz>1and7<y<m
3) fB dS, where B is given by y > 0.

+x2+y)

| =

1) [ In(2? + y?) dS, where B is given by x2 + y* >
5) [pxyexp(—a® —y?)dS, where B = R?.

6) [xydS, where B =R>.

7) [z xexp(—(z+y))dS, where B is given by 0 < z < 400 and x < y.

8) fB exp(—|z| — y) dS, where B is given by —oco < x < 400 and y > |z|.

1
9) fB 22 exp(—yz? — x) dS, where B is given by x > 1 and 0 <y < —

x
10) fB 1 5 dS, where B is given by 0 < x < +00 and 0 <y < Arctan z.
11) fB )dS where B is given by 1 <y < 400 and 0 <z < /y—1

12 —————dS, where B is the triangle of the vertices (1,0), (1,1) and (0,1).

A Tmproper plane integrals where the integrand is continuous and the domain is unbounded.

Note that Example 4.2.12 is not at the right place, because the domain in this example is
bounded, while the integrand is unbounded. For the same reason it is also given as Exam-
ple 4.1.12.
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D The integrands are defined in the given unbounded domains (sketch these). If the integrand is
of fixed sign for x? + y? sufficiently large, we may choose an easy truncation. However, if the
integrand is both positive and negative when 22 + y? tends to infinity, we shall be more careful in
our choice of truncation. At last check the limit 22 4 y? — +oc.
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©

Figure 53: The truncation of Example 4.2.1.

I 1) The integrand is positive in all of the domain B, which lies in the first quadrant. We choose the

truncation

Bi={(z,y)|1<a<t,a<y<a2+1}, fort> 1.

Then
/ Y_as = /til {/ xzﬂydy}da::/t—l Fyﬂmdy
B, T2+ L z(z+1) | J, pa(e+l) (27 ],

I
N | —
)\w
—N
8=

|
8
+ (=
—
—

QU

5

I
N =
Y

=
S
8
+ | 8
—
SN——
—_
— ~

1 1 1
= —In2—=-In(1+-
p ey T t>
We conclude by taking the limit that the improper plane integral exists and that its value is
given by
1
/ L _ds= lim | —L—dS=<m2
22+ x t—too Jp x? +x 2

2) The integrand is positive in all of the domain. We choose the truncation

1
BtZ{(@“’y) ‘1Swﬁt7—éy§x}, t>1.
X
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w

Figure 54: The truncation of Example 4.2.2.

When we integrate over B; we get

1 t z t i
/th+yd5 = /1 {/; x+ydy}dx—/1[ln(x+y)]y_;dx
t 1 .
/ {1n(2a:)—ln (x+;>} dx:/{ln2+2hl$—1n(1+x2)}dx
! 1

2

t
2\t r
_ 1n2-(t—1)+2[:clnfc—x}§—[mln(Hx)]1+2/1 T2

= In2-(t—1)+2tInt — 2t +2 —tin(1 + 1)
t
+1n2+2/ <1—1)d£ﬂ
1 1+ 22
= 2+4t-In2+2tInt — 2t — tIn(1 +¢%) + 2t — 2 — 2[Arctan z}
1 T
= toln2toln<1+t2)2Arctant+2.

Here

T 1 1 1 1
Arctant—>§ og tln<1+t—2>:t(t_2+t_25<z)>_>0

for t — 400, while t-In2 — 4o00. Hence we conclude that the improper integral does not exist.

3) In this case the domain of integration is the upper half plane, and the integrand is > 0 every-
where. Choose the truncation

Bs,t:{(xay)|*s§x§530§y§t}ﬂ S’t>0'
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259

154

0.54

054

Figure 55: Example of a truncation in Example 4.2.3.

Then

s t s t
Y Y 1 1
— 7 dS = — —dyy =2 —_—— d
/B (1+22 + )2 —{/0 (1+a2+ ) y} 2/0 [ 1+x2+y2]y_o !
§ 1 1 1 x s
= - dr = |Arctan x — Arctan [ ——
/0 {1+x2 (1+t2)+x2} { VIt < 1+t2>]0

1
= Arctan s — ——— Arctan

et ()

s
Here Arctan < is bounded, so we conclude that the improper plane integral exists and
o) ol
it has the value
Y . . Y ) -
1+ 22 1 42)2 = 71 9 . o\o = 1 A = —.
/B (1422 +y?)? ds sl}r-s{loo tl}{f—noo 5., (1+22 +y2)?2 ds Lo rctan s 5

Figure 56: The truncation of Example 4.2.4.

4) The domain is the complementary set of a disc, and the integrand is positive for 22 + y* > 1.
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We choose the following truncation (in polar coordinates)

gggr}, r > 1.

1
BT:{(Qa@) ‘ 0§§0§27T,§

Then

27
/ln(ac2+y2)d5 = / {
B, 0
1.1

1
29 2y _ 2 1o L1
7T{’/‘ In(r<) —r 4ln4—|—4}—>—|—oo,

for x — 400, so the improper integral does not exist.

2

m\»—-\
3

In(g?) - QdQ} do =27 B (92 In(0?) — 92)

1
2

5) This is another vicious example. The point is that we can separate the variables, so (roughly
speaking)

+o0 too
/ ryexp(—a® —y?)dS = / v exp(—a?) da - / yexp(—y?) dy
B

—0o0 — 00

2

{/;Ootexp(—tz)dt} .
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Since
e’} 0 “+o0
/ texp(—tz)dt:/ texp(—tQ)dt—i—/ texp(—t?)dt,
—0o0 —00 0
where e.g.
+oo 1 teo
/ texp(—t?)dt = {—— exp(—tQ)} =
0 2 0 2

and similarly over the negative X-axis, the improper integral exists an it follows by the sym-
metry that

/ zyexp(—z? —y?)dS = 0.
B

REMARK. Note that we must argue of the convergency of the improper integral, otherwise the
treatment of the example is not correct, even if one formally obtains the correct result 0. ¢

6) If we restrict the truncation B,5 = [0,n] x [0,n] only to the first quadrant, then clearly zy > 0
on B;f. The integral over B,

n n 2\ 2 4
/ mde:/ xdx~/ ydyz(n—) zn—,
Bt 0 0 2 4

tends to +oo for n — 4o00. Hence it follows that the improper plane integral is divergent.

REMARK. Notice that if one e.g uses the pocket calculator TI-92 with the command

limit(/(/(m*y,az,—n,n),% _n7n)7n7oo)7

then one gets the wrong result 0. In this case one cannot trust one’s pocket calculator!

-0z 0 02 04 06 08 1 12 14

027

Figure 57: The truncated triangle of Example 4.2.7.

7) The integrand is positive everywhere, so we can use the truncation

Bi={(z,y) |0<y<t,0<z <y}, t>0.
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The by integration,

/Bt zexp(—(z +1y)) dS = /Ot {/Oy reTe dx} dy — /Ot v {/Oy et da:} dy

t t
= / e Y [—xe_”” - e_””]zzo dy = / e Y {—ye_y —e Y+ 1} dy
0 0
t

1 1 1 !
= {e7v — e % — yefzy} dy=|—e V4 e 4 _ye W4 _ W
0 2 2 4 o

11 3 1 1 3 1
—1_-_>_ o I IR O
2 1~ ¢ T14° 9% 1€ tge Tagte

We conclude by taking the limit ¢ — 400 that the improper integral exists and its value is
given by

/ zexp(—(x +y))dS = lim xexp(—(x +y))dS = i
B

t——+o0 By

1.44

1.2

0.8

0.6

0.4

0.2

-0.2-

Figure 58: The truncated triangle of Example 4.2.8.

8) The integrand is positive in the domain of integration, so we can choose the truncation

By ={(z,y)| |zl <y <t}, t>0.

t Yy t Y
/ {/ e~ lwlemy dx} dy = 2/ e Y {/ e " dgc} dy
0 —y 0 0

t t

2/ e Y(l—eV)dy = 2/ (e7t — e_2y) dy
0 0

= 20 —eH—(1—e?)=1—-2"t e 2.

Then by integration over By,

/ exp(—|z| — y) dS
By

Taking the limit ¢ — +o0o we conclude that the improper plane integral exists and that its
value is

/ exp(—|z] —)dS = lim [ exp(—|a| —y)dS =1.
B t——+oo B,
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0 j 05 1 15 2 25 3
-02

Figure 59: The truncation of Example 4.2.9.

9) The integrand is defined and > 0 all over R2. We can choose the truncation
1
Btz{(w) ‘ 1Sxét,0§y§—}, t>1.
T

Then by the theorem of reduction for ¢ > 1,

t( =
/ z? exp(—yx? — x)dS = / / 2?2 exp(—yx?) e "dy 3 dx
By 1 0
t 1 t
:/ e " {/ exp(—yx?)z? dy} dx :/ e " [f exp(fy:vQ)] o dz
1 0 1

t

t t 1
/ e (l—e ™) de = / (e7® —e ) dr = {—em + - eQI}
1 1 2 1

_1 1 —t 1 —2t
T e ¢ Tt

Taking the limit ¢ — 400 we get

gl

<

1 1 2e — 1
lim 22exp(—yx? —z)dS =~ — — = "———,
t—+too Jp p(-y ) e 22 2¢2
so we conclude that the improper plane integral is convergent with the value

2e —1

2 2

— —x)dS = ——

/Ba? exp(—yx® — x) 552

10) The integrand is positive everywhere in the unbounded domain. If we choose the truncation
By ={(z,y) |0<2z <t 0<y< Arctan z}, t >0,

we get the integral

2 t Arctan z t 3
1 1 Arct
/yids _ /7 / Py b ap = L [ HArctanz}”
Bt1+ﬂj2 0 1+$2 0 3 0 1+1‘2

1 1 4
= —{Arctan t}4 — . (f) -
12 12
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Figure 60: The truncation of the domain of Example 4.2.10.

and the improper plane integral is convergent with the value

2 2 4

y : y m
s = 1 s ==
,él+x2 =400 Jp, 1+ 22 102

Figure 61: The truncation of Example 4.2.11.

11) The integrand is positive everywhere in the open and unbounded domain. We choose the
truncation

By ={(z,y) | 1<y <t,0< 2z <y —1},

x ‘1 v=l g 1t Ve
— 48 = - — " deSdy== [ =[m(1+2)]YY d
/Bty(lﬂr?) /1y /0 a2 (Y 2/1 y @D dy

I 1
= 5/1 ;lnydyzz{lnt}2—>+oo

for t — +o00. We conclude that the improper plane integral is divergent.

SO
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Example 4.3 There is in each of the following cases given a plane integral, in which there enters a
parameter a € R. The integral is improper for some or every value of the parameter a. Let M¢ and
Mp = R\ Mg be sets of real numbers, such that the integral is convergent (or proper) for a € M¢
and divergent for « € Mp. Find in each of the cases Mc and Mp and the value of the integral for
a € Me.

In(a? + )

1 = dS, where B = K((0,0);¢e).
) Is (\/m) ((0,0):e)

2) fB(a) xydS, where B(a) = {(z,y) | 1 <o < 400, 0 <y <272},

1 1
3) foo‘dS, whereBz{(a:,y) ’ 1§x<+oo,;§y§;}.

1
4) Jp(ay 7 49, where B(a) = {(z,y) [0 <z <1,0 <y <all},

1 2
5) [zy*dS, whereB:{(m,y) ’ 1<x<+oo,—<y<—},
T

x

6) [5exp(—a(z® +y?))dS, where B =R

7) [5(1 = cos(axy))dS, where B =R x [0,1].

A TImproper plane integrals.

D Sketch the domain. Analyze where “there is something wrong”. This happens typically when

1) the integrand is not defined,

2) the domain is unbounded,

but it may principally also be of another kind.
Calculate the following improper plane integrals, and find M. The the rest follows easily.

Figure 62: The truncated domain of Example 4.3.1.
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I 1) The domain is the closed disc of centrum (0,0) and radius e. The integrand is not defined at
(0,0). It is negative in every dotted neighbourhood of (0,0) of radius < 1. Since the positive
part, corresponding to 1 < ¢ < e, is finite, we may use the truncation

B.={(0,p)|0<p<2m,r<p<e}, O0<r<e.

In the computation of the following plane integral over B,., we use a reduction in polar coordi-
nates and the substitution v = In o. Then

In(z? + 2 a € In(o? ¢ In 1
/(7)”5 = / {/ (g)-gdg}dcpzélﬂ'/ N o
B, (,/;L'2+y2) 0 r Y r O o

1
= 47r/ w- e gy
1

nr

As Inr — —oo for r — 0+, and as the integrand is monotonous for

1
o
u<m1n{ 7a—2}’
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we must at least require that the integrand tends to 0 for u — —oo, which according to the
rules of magnitudes gives the condition 2 — a > 0. We conclude that

Mc g}—00,2[

Then let o < 2. It follows from (2) that

In(z? + 3 ! 1 1 !
/ Il(fE +y )a ds = 471'/ u- e2704)u du = 47 |: ue(27o¢)u - - 6(27(1)11
B, <1/J;2+y2) Inr 2-« (2—0() Inr
2-a)-1 , T 1,
—4 \e—% =+ o - o - al
7T{ CIE e 5" nr (2_a)2r

Using the rules of magnitudes once more we see that this expression converges for r — 0+,
hence

Me Z]—OO,Z[ og MD=[2,+OO[.
When a € Me =] — 00,2], we get the value of the improper plane integral
1 2 2 1 2 2 1—
/711(“7 ) s o gy [ RO gy 170 e
B (V2% +y?) =0+ Jp, (Va2 +y?)® (2-a)

Figure 63: The truncated domain of Example 4.3.2 for a = 1.

2) The domain is unbounded. Since zy > 0 in B(«), we consider the truncation

Bi(a) ={(z,y) |1 <2 <t,0<y<z7%}, 1<t<+o0.

The corresponding plane integral is

t = 1 [t
/ xydS :/ / zydy pde = —/ 172 o,
Bi(a) 1 | Jo 2

It is well-known that this integral converges for ¢ — +oo, if and only if 1 —2a < —1, i.e. if and
only if o > 1. It follows that

Me =]1,40c0] and Mp =] —o0,1].

Download free books at BookBooN.com

80



Calculus 2c-5 Improper plane integral

For o € Mg, i.e. for a > 1,

/ x272a t 1
zydS = lim zydS = lim { ] = .
B(a) t—+o0 /g, (a) t—too [2(2—-2a) ], 4(a—1)

Figure 64: The truncation of Example 4.3.3.

3) In this case « enters the integrand and the domain is unbounded. The integrand is positive in
B, so we can choose the truncation

Bt = {(Z‘,y)
When a # 1 we get
t % t 1 %
/ yrds = / / y“dy pdr = / {— yo‘Jrl} dx
By 1 2 1 la+1 v=1
1 ! 1 20-2
a+1/1 {m I A }dw.

1
Furthermore, if o # 0 and « # —g then

1 1 1 t
ads = e —2a—1
/Bty oz—|—1[ o’ Toari1” ]1

_ 1 1 1 n 1 1 1+ 1 1
T oa4+1lla 2a+1 a+1 a ¢ 2a4+1 tetl [

This expression converges for ¢ — 400, if and only if & > 0 (as o # 0 was assumed in advance)
and 2a+ 1 > 0, i.e. if and only if a > 0. In this case,

o . o 1 1 1 20+ 1—« 1
y*dS = lim y*dS = - — = = .
B t—+oo | a+1l|la 2a+1 ala+1)2a+1)  al2a+1)

In the exceptional case a = 0,

tf = 11 17"
/yadS /dS:/{/ dy}dx:/{——j}dx:{lnx—i——}
B, B, 1 1 P x|,
1

1 1
1Sx§t,—2éyé—}, t>1.
xr X

22

1nt—|—;—1—>—|—oo, t — +o0.
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1
We get in the other two exceptional cases o = —1 and a = —
y* >y’ =1,
because 0 < y < 1 in B. Since already the case o« = 0 is divergent, we conclude that we have
divergence in all three exceptional cases a = —1, —% and 0.
Summarizing,

Me =]0,400[ and Mp =]— 00,0].

If « € Mg, ie. a > 0, then the value of the improper plane integral is

o 1
/By 5= a1

o
Qacha?

it’s an interesting world

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

= www.careersinbritishintelligence.co.uk

T0P 100 [

s PRI

""’ f Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
oo all sections of the community. We want our workforce to reflect the diversity of our work.

Download free books at BookBooN.com

82


http://bookboon.com/count/pdf/346353/82

Calculus 2c-5 Improper plane integral

-0z 0 02 04 0% 08 12

-0.2

Figure 65: The truncation of Example 4.3.4 in case of a = +2.

4) The domain is bounded for all & € R. The integrand is positive in B(«) \ {(0,0)} and it is not
defined at (0,0). Therefore, we can choose the truncation

Bi(o) ={(z,y) [t<z<1,0<y<all},  o<t<l

Then by a computation,

1 ! lal 1 !
/ de:/ {/ow dy}dm/ gl =1 dy =
Bi(a) ¥ t € t

When we take the limit ¢ — + we see that this is divergent for a = 0 and convergent for a # 0.
Then it follows that

lnl7 for a =0,

1
m(l —tleh), for a # 0.

Mc =R\ {0} and Mp = {0}.

We have for a € Mg, i.e. for a # 0,

1 1 1 1
/ ~dS = lim Las— tim L —gely— L
B(a) x t—0+ By (a) €T t—0+ |O[| |Oz‘

5) Here B is unbounded and the integrand is defined and positive in B. Choosing the truncation

1 2
Bt={<w,y) ‘ 1§x§t,—§ys—}, t>1,
X X

it follows by the theorem of reduction that the integral over B, is given by

t 2
/ y“dS:/ {/ yo‘dy}dx.
B, 1 1

We get in particular for a = —1,

i 11
/ y_ldS:/ / —dy dac:/ <ln—ln>dac:(t—1)ln2,
B, 1 1y 1 x x

x
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Figure 66: The truncation of Example 4.3.5.

which is divergent for t — +o0, hence a = —1 € Mp.

If @ # —1, then we get instead

t 2 toq
*ds = dypde= | —— [y
s [{ [ oaoen [ S

If @ = 0, then in particular

1 ‘1
/dS:—(ZOHfl)/ —dz = Int,
By O+1 1 T

which is divergent for ¢ — 400, hence a =0 € Mp.

B=8[0

e
dx 7/ = .
a+1l J;

If « # —1 and « # 0, then

20 —1 (7 20t — 1
/ y*dS = /x*afldxzi(kfa).
B, a+1 J ala+1)

When t — +o00, this is divergent for a < 0 and convergent for o > 0.
Summarizing we see that Mp = R\ Ry and M = Ry.

If @« € Mo =R, then we get the value of the improper plane integral
20+l _ 1

*dS = 1l *dS = ——— > 0.
/By s t—bo Bty ale+1)’ “

When «a < 0, the integrand tends to +oo for /22 + y2 — 400, and when « = 0, the integrand
is a constant = 1. It follows that the improper integral is divergent for o < 0.

Let a > 0. Then the integrand is > 0 everywhere. By choosing the truncation

By ={(z,y) |2* +y* <t} = B[0,t],  t>0,
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and using polar coordinates and the change of variables u = o2 we get
t
/ exp(—a(z? +y?))dS = 271'/ exp(—ag?) - odo
B, 0

t2
= 7r/ e~ dy = 1 {1—exp(—at®)} — T for t — 4-o0.
0 « «
We conclude that
Mc =10, +o0] and Mp =] — 00,0].

If « € Mo, ie. a >0, then
2 2 m
/ exp(—a(z® +y°))dS = —.
R2 «

7) If @ = 0, the integrand is 0, so the improper plane integral is convergent for « =0 € M. As
cos(—axy) = cos(axy) we may in the following restrict ourselves to o > 0. The integrand is
> 0 everywhere, so it suffices with the truncation

By = [~t,] x [0,1],  t>0.

o
B By 2020, wind could provide one-tenth of our planet’s
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jeation. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!

T’% Power of Knowledge Engineering

.
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Then

| (1 cos(azy)ds =2t - /_tt {/01 cos(azy) dy} dr =2t — /_tt {%} ; "

_2t—2/thx_2t—g/ismxd:p.
0 0

ax (0% x

Note that if t > wa, then

© sinx Tsinx g
/ dz S/ da:</ ldr =,
0 T o T 0

hence

2
/ (1 —cos(azxy))dS > 2t — RURNERRSS
B, @

for t — +o00

for every a > 0, and thus also for every a < 0. We conclude that

MC - {0} and MD =R \ {0},

and that

/ (1 —cos(azy))dS =0 for a = 0.
B

Example 4.4 Let B={(z,y) |0 <z <y <1}, and let

1
1—2a

flz,y) =
Compute the plane integrals
/ y f(z,y)dS  and / y? f(z,y)dS.
B B

Which order of integration will give the shortest calculations?

A Tmproper plane integrals.

D Sketch the domain. Truncate it. Set up the double integrals and compute. Finally, take the limits.

I The domain B can be described in two ways,

B={(z,y)|0<or <L, z<y<1l}={(z,9)|0<y<1,0<z <y}

The integrand is not defined at the point (1,1) € B. It is positive in the rest of B. We have (at

least) two possibilities of truncation,

Bi={(z,y) |0<z<t,z<y<1} 0<t<l,

86
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-0.2

Figure 67: The domain with two possible truncations.

and
Bf ={(z,y) |0<y<t,0<z<y}, 0<t<l

Formally we have the following two possibilities for the improper double integrals,

(2) /Byf(:ﬂ,y)dS—/ol1;:{/:_ydy}dw—/ol_y{/oy1ixdx}dy.

By the computation we shall strictly speaking apply the truncation B; in the first double integral,
and the truncation Bj in the second one. However, if we write 1— in the bound of integration
we indicate that the integral is calculated by taking a limit. The integrand is positive where it is
defined, so the only thing which may go wrong is that the value of (2) becomes +oo, which will
immediately be seen. Therefore, we shall allow ourselves to be careless in the following and only
write 1— instead of ¢ with lim;_,;_ in front of the integral.

When we consider the two possible double integrals of (2), the former one looks like the easiest
one. Of course the same order of integrations in the double integral, when ¥ is replaced by 2,

1
because it is the integral foy 1—2 dx = —In(1 — y), which is troublesome in the computations of
—x

the y-integral. We shall below demonstrate both possibilities.

1) THE EASY DOUBLE INTEGRAL:

1- 1 1— 1—
1 1 1 1 1-
/ / ydy p dx 7/ [yz]l_ dx:f/ m dx
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2) THE DIFFICULT DOUBLE INTEGRAL:

1— Yy 1 1—
/ y{/ : d:c}dy/ y{—In(1 —y)}dy
0 0 - 0
2 Y 42
Y t 1

{
— _ygql_{y—;m(l—ywr%/oy <1t+%_t>dt}
{

2
S A ST DI SN S R TR
= —Jfm T -y -gy— gy -5 ll-y)
: (y—Dy+1)nd-y) 1 1 3
= 1 — Sz
y—lf{l—{ 2 tetiTa

Anyway, we get the same value by both methods.

Similarly, when we only show the easiest method,

/Qf( )dS_/lL /1 2d d_l/l 1 [3]1 d
e ds= | | dypde=o [ ], de

R 1! 1 2 23!
= de = - 1 Nde = = 4
3/0 1-z 3/0{+x+x}x 3{$+2+3]0

1 1+1+1 11
3 2 3] 18
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Example 4.5 It is well-known that
+o00o
/ t"e~tdt = n!, n € Np.
0

Now, let
B={(z,y)|0<z <y < +oo}
and

I:/ 2" (y —x)"e Y dS, m, n € Ny.
B

1) Prove that I is convergent with the value n!m!. (Truncate B by the lines x =T and y =T + z,
and then let T tend to plus infinity).

2) Truncate B by the liney =T. Let T — 400 and find an expression of the integral
1
J:/ t"(1 —t)™ dt, m, n € Np.
0

In order to secure that the two integrals over [0, +o0c[ and [0, 1] exist it is not necessary to require that
m and n are integers. It suffices to require that they are bigger than —1. On this basis one introduced
the gamma function and the beta function in the following way:

—+o0
r(g):/ t=teTvdt,  £>0,
0

and

1
Bew = [ € 0-0 i g0 g0

Notice that the exponents are written differently from the original integrals. In particular, T'(n+1) = nl.
3. Use the result of 2) to express B(£,m) by means of the gamma function.

A TImproper plane integral; the gamma function and the beta function.

D Follow the guidelines.

I Just in case, we first prove that

+o0
(3) / t" et dt = nl, n € Ny.
0

If n =0, then
“+o00
/ e tdt = [—e*t]goo =1=0.
0
If n =1, then

+oo
/ te tdt = [fte*t — e*t]Jroo =1=1.L
0
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T i 15 2 25 3
X

Figure 68: The truncation Br.

Assume that (3) holds for some n € N. Then we get by partial integration

+o0 +oo
/0 et dt = [—t"Tle ] 3_00 + (n+ 1)/0 t"e tdt =0+ (n+ )n! = (n+1)!

according to the assumption of induction. Then (3) follows by induction.

The domain
B={(z,y) |0<z<y<+4oo}={(z,y) | 0<z < 400, 2 <y < +o0}

is unbounded. The integrand a™(y — 2)™e~¥ is > 0 in B, so we can use the truncation
Br={(z,y) |0<2z<T,z<y<z+T},

which catches every point of B, when T — +oco. In fact, every (z,y) € B lies in By, if only

1) The shape of the domain invites one first to integrate with respect to y and then with respect
to x. The plane integral over By becomes

T x+T
/ 2"y —ax)me VdS = / " {/ (y —x)me™¥ dy} dz
BT 0 x
T A+ T T T
= / ae " {/ (y — x)me” W) dy} dx = / ae " {/ tme ! dt} dx.
0 e 0 0

This implies according to (3) that

I = / 2"y —x)"e ¥dS = lim 2" (y —x)"e Y dS
B T—+oo Br

T T
lim {/ e " dm} {/ tme=t dt} =n!lm!.
T—+o00 0 0
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25

05

Figure 69: The truncation B/..

2) Next we truncate in the following way
By ={(z.y) [ 0<2<T 2<y<T}={(x,y) |0<y<T, 0<z <y}

Applying the substitution y = ty, t € [0, 1], we get

T Y
/ x"(y—x)me_dez/ {/ w"(y—m)mdm}dy
B 0 0
T 1 1 T
:/ e—yy”+m+1{/ t"(l—t)mdt} dy:/ t”(l—t)mdt-/ vy dy,
0 0 0 0

By taking the limit 7' — +o00, followed by the result of 1) and (3), we get

’
T

nlm! = / 2"y —x)"e YdS = lim 2" (y —x)"e Y dS
B T—+o00 B}

1
- (n—l—m—l—l)!/ (1 — £y dt,
0

hence

1 n:m.
(4) J:/O t"(lt)mdtw_:_l)!.

3) A small consideration shows that the proofs of 1) and 2) carry over unchanged if only n, m > 0
are real. If instead n > —1 or m > —1, we need an extra standard consideration concerning
the existence of the improper plane integral (truncation of the domain around (0, 0), etc.). The
details are skipped here.

All this means that the result of 2) can now be written,

I'(n+1)(m+ 1)
T(n+m+2)

J=Bn+1lm+1)= , m,n > —1.

Puttingx =n+1and y =m + 1 we get n +m + 2 = x + y, thus

L(@)T(y)

, z,y > 0.
Iz +y) 4

B(z,y) =
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Example 4.6 Let f: R — R be a C'-function, where the limit
f(#00) = lim f(z),
r—+00
exists and is finite, and which also satisfies the condition

[Tt
1

x

18 convergent.

Show by reducing the plane integral of the function g(x,y) = f'(xy) over the rectangle [0, c] X [a,b] in
two ways and then let ¢ tend towards +oo that

[t

+

= {f(0) = f(+o0)} In () -

Note that there do not exist a theorem which makes it possible to let ¢ tend towards +oo under the
sign of integration. Howewver, the result can be obtained by some rearrangements, by which one finally
can apply the given condition.

A Tmproper integral computed by means of an improper plane integral.
D Follow the guidelines. Be in particular careful with the limit.

I By the reduction of the plane integral we get on one hand that

We note that the integrand of the latter integral can be extended continuously to z = 0, e.g. by
L’Hopital’s rule,

i 107) = flaz) | bf(br) — af'(a)

z—0 xT z—0 1

= (b - a)fl(0)7

which can be used as the value of the integrand at = = 0.

On the other hand, we get by interchanging the order of integration,

When we identify the two expressions of change their signs we get

[ e [
Here we cannot take the limit ¢ — 400 on the right hand side. Instead we rewrite it in the
following way,

/f cyd_/f +ood+/f+00)yf(cy)dy

fley) = f(xo0)

={f(0) — f(+o0 }ln / fley) cdy (where t = cy)
cb

f()*f(JrOO)

(J0) — f(+o0)}in” - 7o)y,

ca
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@ ft) = f(+o0)
t

(5) /O M dz = {£(0) — f(+oo)}1n§ - dt.

ca

We shall now prove that the right hand side of (5) is convergent for ¢ — +o00. The first term is
constant, so we shall consider the latter integral. By the assumptions,

J P

/ convergent.

This means that

lim i M dt = 0.
k—>+00 k t

By the definition of convergency there exists to every e > 0 a k(e) > 1, such that

/+°° f(t) — f(+00)
. t

dt‘ < g for every k > k(e).

.
s &
= F
| \" Y

27
(22277 & " a-;‘

FIRST CONTACT

Get matched to top business
employers via intelligent emails
landing in your inbox.

PLANET CAREER ADVICE Milkround.com: rated-the
Inhabited by insights into #1 graduate recruitment

business careers and orbited M=
by application advice. website in the UK Graduate

MILKROUND SYSTEM . ‘Careers Survey 2009 of

Become a business star with B e o : 16,000 university finalists.
internships, placements, k. AR 7

graduate jobs & schemes

from leading companies.

) " < ;
www.milkround.com . M I I I“‘ﬂ “ n [I
_ - ( H ]|

Download free books at BookBooN.com

93


http://bookboon.com/count/pdf/346353/93

Calculus 2c-5 Improper plane integral

If ¢ satisfies k(e) < ca < cb, then we get the estimate

@ f)=f(+o0) | RS C Py g (L) dt‘
ca t ca l cb l
< /m —f(t)_{(+oo) dt‘+ /m —f(t)_{(+oo) dt‘ <t+z=c
ca cb

This holds for every e > 0, hence it follows that the right hand side of (5) is convergent for ¢ — 400,
and the same must then be the case of the left hand side. Finally, by taking the limit.

/*"" M do = {f(0) = f(+o0)}In <g>

0

as required.

Example 4.7 Let
B={(zy)|2* +y* <4,y >|z]}
and

" +y2
y4 + x2y2’

fx,y) = (z,y) € B\ {(0,0)},

where n 1s an integer.
1. Prove the inequality f(z,y) > 0 for all (z,y) € B\ {(0,0)}.

Then consider the improper plane integral

I= / f(z,y) dx dy.
B
2. Find the values of n, for which I is convergent.
3. Compute the value of I for n = 3.
A TImproper plane integral.
D Sketch B. Estimate f(x,y). Check the improper plane integral.
I 1) From y > |z| follows that y? > |z|?> > —2", hence 2" + y* > 0, and we clearly have
yt+aty? =y (@ + %) >0 for (2,y) € B\{(0,0)}.

2) The domain B is best described in polar coordinates by

B={(Q,e0) ' 0<0<2,p€ B%ﬂ]}

Put for € €]0, 2],

Baz{(@,w) 12

T 3w
€§QS2,<P€[— —}}
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Then
/ f(z,y)dzdy
B

0.54

05 1

Figure 70: The domain B.

/ o" cos™ ¢ + sin”
p. 0% sin® ¢ 4 cos? ¢ sin @

3
1

4

odpdo

cos™ @ +sin” 2
/ Tl dp- / 0" do.
= sin” ¢ .

1
The former integral exists for every n € N independently of ¢ > 0, because sin® ¢ > 3 for

c|T 37
L VRR

Furthermore, the limit

2
lim 0" 3do
0 €

e—

exists and has a finite value if and only if n—3 > —1, i.e. if and only if n > 2, or put in another
way, if and only if n € N'\ {1, 2}, since we require that n € N.

If n = 3, then it follows from the above that

B,

thus

/ f(z,y)dzdy
B

faydody = [

3

1

37
1

sin? o

37

0+2[—cospls =2

us
4

3 03
COS” ¢ + sIn wdcp

2
€

3m

37T
a4 2 4

2/ C?SQSD@osgpdcp—«—Q/ sin o dy
- 2

jus
4

(o)
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Example 4.8 Let B be the rectangle [0,1] x [—1,1]. Show that the integral

1
Iz/ ds
B l+uzy
2

1
is convergent and has the value — 7=,

HINT. Replace y the new variable of integration u given by

<u< —.

sinu:y+%x(y2—1), —

ol
ol 3

First integrate with respect to x and apply the formula
t (71' n u) 1+ sinu
an(—+—-)=———.
4 2 cosu

A Tmproper plane integral.

D Check that the integrand is > 0, and the points in which it not defined. Prove that using (x,u)
instead of (z,y) is a legal change of parameters. Explain the trigonometric formula, and apply the
trick.

0.54

02 04 06 08 1214

0.5

1
Figure 71: The domain B with the curve of singularities y = ——.
x

Clearly, 1 + zy > 01 B, where 1 + zy = 0 only at the point (1,—1) € B. The integrand is > 0 in
B\ {(1,—1)}, so we can allow ourselves carelessly to skip the truncation. In fact, if the integral is
divergent, this can only happen by getting

| fayds = +oc,
B
which is immediately seen. This convention eases the solution of the task.

REMARK 1. By the traditional procedure one would e.g. get

1 ! | |
I:/ dS:/ {/ dm}dy:/ — In(1 + y) dy,
Bl+xy 1 U 1+uay 1Y ( )
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which does not look promising. It is here of no help to interchange the order of integration, because
than one would get the even more incalculable expression

1
(e
0 T 1—2

Therefore, we choose to use the hint. ¢

REMARK 2. For the sake of completeness we here prove the trigonometric formula which is given
in the hint. When —g <u< g, then

u

tan(w u> _ 1+tan%icos%+sin§7

l—tang cosg —sing  cos? % —sin

cos? ——|—sm ——|—2sm— cos% 1-+sinu

CoSsu COS u

and the formula is proved.
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First notice that for every fixed x € [0, 1],

1
pley)=y+5e(’—1),  yel-1L1],
is increasing in y, because
dyp

— =1+4+2y>0 iB,
dy

and this expression if only = 0 for (z,y) = (1,-1) € B.

Since ¢ is continuous, the range is connected (first main theorem for continuous functions). Now,
o(z,—1) = —1 and p(z,1) = 1, so the range is again B. This shows the legacy of introducing the
transform of the coordinate,

<u< —.

u= Arcsin(y—k%glg(y?_1))7 _

o N
[V

REMARK 3. We shall not use this expression in the rest of the example. The essential thing here
is only to assure that we can make the given change of variable. ¢

We now put

. 1
51nu:y—|—§x(y2—1), —

| x
IN
S
IN
|

If x =0 (a null set), then y = sinu.
If > 0 and (z,y) € B, then

2 . 2 ) 1\? 1
—simu=—-y+y —1=(y+ — —(1+ >
xZ T x €T

hence

V14 2zsinu4+ 22 -1

1 1 -
y=——+—vV1+2zsinu+az?=
r x

because |y| < 1 and 0 < 2 < 1 imply that we can only use one sign in front of the square root.
Notice that

1+ 2zsinu + 22 = (x +sinu)? 4 cos? u,

so the square root is defined.

Now,

oy 1 1 2x cos u cos U

oz 2 V1+2rsinu+ 22 1+ 2rsinu+ 22

and the Jacobian of the change of variables is

on or |y,
Oox Ou CcoS U

dy  Jy * cosu V14 2zsinu + 22’
= = V1 +2xsinu + 22
or Ou
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0
a—y, because it shall later be multiplied by 0.
x

where * indicates that there is no need to compute
Finally,

l4ay=14V1+2xsinu+22—1=+/1+ 2zsinu+ 22.

By insertion into the formula of changing variables we get(NOTICE: the integrals are still improper
with a positive integrand),

1 z ! 1 5
/ s = / {/ : o dx}du
g l+txzy _= Jo V14 2zsinu+ 22 V14 2zsinu+ 22

2
jus
2

1 z 1
cosu 2 cosu
/’2“ {/0 1+ 2xsinu + 22 x} " /, {/0 (x + sinw)? 4 cos? x} "

s
2

™

3 1t 1 3 i !
= / / 5 dr p du= / [Arctan <w>} du
—z | cOsu Jo 1+ <a:+sinu> -z cosu =0

cosu

™

3 1+ si
/ {Arctan (ﬂ) — Arctan(tanu) } du.
_ cosu

s
2

Ifvy e ],g , g {, then Arctan(tant) = 1, hence the latter term of the integrand is —u.

Ifue }—Z E[, thenz—i—ge }—Z[, hence

272 4 2 2

1+sinu T T u
Arctan () vt (tan (T4 2)) = T4 2
rcan< cosu> rctan | tan 4+2 4+2

Then by insertion,

1 T on w T 1 [2 2
dS — {_ * }d _ . __/ du = —,
/BnyS /_ TR Y S I B

as required.

REMARK 4. If we above first had integrated with respect to « (which could be tempting, considering
the integrand), then we would get

1 1 E Irq 2
/ s = / / %Y d:c:/ — In (1 +2zsinu + 2?) dx
g l+azy 0 _z 1+ 2zsinu+ 22 0 |2z S

1 2 1
1 142 1 1
Ly (L2t dm:/ Lo (157 g,
0 2z 1—2z+ 22 0 T 1—x

and we had ended in the same dead end as before.

Note however, that if we compare the results of the “impossible” rearrangements of the expression
which we have found, we have unawares proved that

1 1 2
1 1 1

/ —ln(l—l—x)dx:/ —ln( +x>dx:7r—,

1T 0o T 1—2x 4

which is a result which usually cannot be obtained in Calculus. ¢
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Calculus 2c-5 Improper plane integral

Example 4.9 Let E be the square [0,1] x [0,1]. Find the integrals

1 1
Jy = as,  Jy = ds,
! /El—xy ° /EHwy

bo forming J; — Jo and J1 + Jo and then apply the result of the previous example.

A Computation of “impossible” plane integrals, of which one is improper.

D Apply the hint as well as results from Example 4.8, supplied by an attempt to calculate Jy
directly.

I The integrands are > 0, thus we shall not need to be too careful with the improper plane integrals.
If one of them should be divergent, this will show up naturally as the value +oo.

First notice that (an improper plane integral)

1 Yot
[t [ 1] o)
el—xy 0 0o 1—ay
/ {—— In(1 — xy)] dx = —/ = In(1 — z) dz.
0 X y:0 0 X
Then (an improper plane integral of non-negative integrand)
=Ty = / Lo dS—/ 22y dS—/l /1 2 gy de
T e ey 1y CJpl-a2y? o Lo 1-a?y? Y
1 1 1
7/0 - [In (1—2%y )}yzodyf 7/0 - In(1—2%)dx = 75/0 i In(1—¢t)dt = §J1,

1
hence Jy = 3 Ji.

J1

Finally, it follows from Example 4.8,

3 ! 1
= = = dy ¢ d dy ¢ d
Nt 2J1 /0 {0 1—uay y} o {0 I+ay y} ’

1 0 1 1 1y 2
= [ AL mante [ mmfe- [ mmepe-T
0 1+uzy 0 1+xy 0 L4y 4

thus
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Calculus 2c-5 Improper plane integral

Example 4.10 Let B be the disc of centrum (0,0) and radius a. Prove that the improper integrals

and J = ! ds

1
I=/—d$
B a2 — 22 — 2 B a2 — a2 —y2. /22 + 42

are convergent, and find their values.

A Tmproper integrals.

D The integrands are positive, where they are defined, hence it suffices to truncate in polar coordi-
nates, followed by taking the limit.

I 1) The integrand is defines and positive in the interior of the disc B. When we use polar coordinates
and integrate over B,_.(0), i.e. the disc of centrum (0, 0) and radius a — ¢, then

1 a—e a—e
/ —dS=27T/ ;dt:w[—\/(ﬂ—ﬂ}
Bu-o(0) Va* — 2% —y? o Va'-r? 0

= w{\/a_Q—\/m}:ﬂ{a—v2as—s2}—>ﬂa fore = 0+.

I. =
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Calculus 2c-5 Improper plane integral

We conclude that the improper integral is convergent and it has the value

dS = rma.

= / I S
R
2) The integrand is defined and positive in B°\ {0}. We choose the truncation as
Be := Ba—<(0) \ B(0).
The integrand is positive everywhere in B, so

1 dr

a—e r a—e
J:/ dS:27r/ 7dr:27r/ _ar
€ B. \/a2—x2—y2-\/$2+y2 - Vaz —r2.r R [a2 — 12

By choosing the substitution » = a - sint we get

Arcsin(1-<)
Je = 271‘/ a-cost dt =27 {Arcsin (1 - E) — Arcsin (E) } .
a a

Arcsin(£) a-cost

It follows that the improper integral is convergent, and that is has the value

1

J:
/13\/a2—x2—y2-\/x2—|—y2

ds = lir% J. = 2m{Arcsin 1 — Arcsin 0} = 7%
E—

Example 4.11 Let B be the triangle given by the inequalities
0<y<zxz and 0<z<l1.

Show that the improper plane integral

is convergent, and find its value.

A TImproper plane integral.

D First prove that the integrand is > 0, whenever it is defined. Then truncate; compute the plane
integral over the truncated domain and finally, take the limit.

I The integrand is not defined at (0,0) € B.
If (z,y) € B\{(0,0)}, then 0 <y <land 0 <z <1,sa —co <Ilnz <0, and hence
y_720 for (x,y)EB\{(0,0)}

The integrand is positive or zero elsewhere, so we can choose the following truncation,

B.: 0<y<z og e<x<l, for0<e< 1.
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Calculus 2c-5 Improper plane integral

Figure 72: The domains B and By .

When we integrate over this truncated domain, we get

[ G6-5) [ (5w

x3 =
Y (rlng— -t =
[6 (zlnzx x)L 5T %

__
N
N
|
8| P

E
——
U
)

I

+elne —e.
It follows from the rules of magnitudes that
1
In (—)
€
1
€

elne = — —0 for ¢ — 0+,

hence it follows by taking the limit that the improper plane integral exists, and it has the value

Inx Inx 7
B —— = 1i - = —.
/B(y T )dS si%l+ B. (y T )dS 6

Example 4.12 . Let B be the triangle given by the inequalities
0<y<uw, 0<z <L

Prove that the improper integral

2y
/BFdS

is convergent, and find its value.

A TImproper plane integral.

D Sketch a figure. Truncate the domain and compute.
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08

06

0.4

0.2

Figure 73: The domain B truncated in the neighbourhood of (0, 0).

I The integrand is not defined at (0,0). It is positive everywhere in the remaining set B\ {(0,0)}.
Hence it suffices to truncate by an € €]0, 1] as on the figure, thereby obtaining the domain

B.={(z,y) | 0<y <z e<a<1}

Then by integration over B.,

2 1 21?2 1 21T 1
/ —stz/ {/ —gdy}dxz/ [y—Q] dx:/ ldz =1—¢.
B. v e o T e L] y=0 o

This expression tends to 1 for € — 0+, so we conclude that the improper integral is convergent
and its value is

2 2
/—ZdS: lim 2 dS = lim (1—¢) = 1.
BT e—0+ e—0+
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Transformation of a plane integral

5 Transformation of a plane integral

Example 5.1 Let B be the trapeze which is bounded by the coordinate azes and the lines given by the

1
equations x +y =1 and x +y = 7 Compute the plane integral

Yy
e dxd
/B P <x+y) Y

by introducing the new variable (u,v) = (x +y,x — y).

A Transformation of a plane integral.

D Compute the Jacobian and find the new domain D.

-0.2

0.2

0.2

Figure 74: The domain B in the XY -plane.

020

0.5

0.5

02 04|06 08
X

Figure 75: The domain D after the transformation to the UV-plane.

I From

(z,y) = ®(u,v)

(

u—+v
2

U —v
2

).
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Calculus 2c-5 Transformation of a plane integral

follows that

[SUIRe)
~|=
SR

SHRSS
SN— | —
— N =
[u—

N | =

D= {(u,v) ‘

<u<l, ugvgu}.

Then by the formula of transformation,

y e () 0@ L e e (2
./Bexp<x+y>dzdy = / exp< o ) ‘8(u,v) dudvfi/1 Ve 7uexp< %>dv du
NG oNE

/ ( u)} - - _\/_/ \/E —Ve)du
3
8

= (e—l)/ludu— (e—1).

2
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Calculus 2c-5 Transformation of a plane integral

Example 5.2 Let B denote set in the first quadrant, which is bounded by the curves xy = 1 and
xy = 2 and by the lines y = x and y = 4x. Sketch B and compute the plan integral

/ z%y? dady
B

by introducing the new variables (u,v) = (xy, g).
x

A Transformation of a plane integral.

D Sketch B. Find den inverse function

(x,y) = (x(uvv)’y(u" U)) = ‘I’(U,U),

and find the corresponding domain D in the UV-plane. Compute the Jacobian and finally trans-
form the plane integral.

017027040608 1 12141618
X

Figure 76: The domain B in the XY-plane.

IIfu:xyandv:gandx,y>0,thenu,v>0,and
x

s = ) = i
v
The domain D is given by
1<zy=u<2 and 1<

hence
D={(u,v) |1 <u<21<0v<4}=][1,2] x[1,4],

i.e. a rectangle in the UV-plane, which it is no need to sketch.

Finally, the Jacobian is

8.73 895 1 1 1 u

du v T “"\/j 1(1 fu o1 fu) 1(1 1 1
Sl A Z{—,/—\ﬁ+ _'_\/i}i{_+_}2_'

8y 8y + _._\/j uv v u v v v v v

a0 o v

ou Ov 2 2 u

IS
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Calculus 2c-5 Transformation of a plane integral

We get by the transformation formula of the plane integral

2 2 2 1 12 2 ‘1
r*y” drdy = u® - — dudv = = u” du - —dv
B D 2v 2 1 1 v

2
11 1 7

Example 5.3 Find the area of the set in the first quadrant, which is bounded by the curves
zy = 4, zy = 8§, xyd =5, xy® =15,

by introducing the new variables uw = xy and v = xy>.

A Area of a set computed by a transformation of a plane integral.

D Find the transformed domain D in the UV-plane and the inverse functions z(u,v) and y(u,v) by
this transformation. Calculate the Jacobian and apply the transformation formula to find the area.

Figure 77: The domain D in the XY-plane. (Different scales on the axes).

I Let B be the given set in the first quadrant. Then z, y > 0 for (x,y) [ B. It follows immediately
that we by the transformation get the domain

D =[4,8] x [5,15].
3

From u = zy, v = zy>, u > 0 and v > 0 follows y? = v and 22 = u—, ie.
U v
3
yz—l—\/z, and m:+\/u—.
u v
Then we get the Jacobian,
9z Oz 3 fu 1 [ud
Sy =| 2 %] 2V T2V 31 11 1
' dy Ay 1 [ 1 /1 4v 4v 2w ’
ou  Ov 2\ ud 2V uv
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Calculus 2c-5 Transformation of a plane integral

Hence the area is

8 1 4
areal(B) = / dxdy = / J(u,v) dudv = / du / 5— dv = —[Inv]:> = 2In3.
B D 4 4 2

Example 5.4 Find the area of the set in the first quadrant, which is bounded by the curves

y:xB’ y:4.'173, l‘:y3a 33:493’

by introducing the new variables

_ Y _Z
u = E, v = y—3
A Area of a set by a transformation of a plane integral.

D Sketch the domain B. Then find D and z(u,v) and y(u,v) by the transformation. Compute the
Jacobian and apply the transformation formula to find the area.

Figure 78: The domain B in the XY -plane.

I The curves y = 2% and = = y? intersect at (x,y) = (1,1). The curves y = 423 and x = 43> intersect
11
at (z,y) = <§, 5) It follows that if the transformation exists and is bijective, then
D =[1,4] x [1,4].
Clearly, x > 0 and y > 0, and hence v > 0 and v > 0. We shall now try to solve the equations

u= 3 and v:y—i for u, v € [1,4].
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Calculus 2c-5 Transformation of a plane integral

follows that

-3 _
8

1 . _1 3
v~ 8, and similarly y =u" 8 v~ 8.

Tr=u
The Jacobian is

Jdr Oy

P — P —§u7%07% —lu7207%
ou Ou 8 8
J(u,v) = =
6_:1: @ _lu_%'()_% —§u_é'()_%
ov  Ov 8 8
R T PR S SRS B
64 64 -8 '

We get the area by applying the transformation formula

1 4 3 4 5 1 4 5
waip) = [as=} ['wtan [eta- L i)
1 2 1) ? 1 1
Q e :_2—12:—.
8{[ \/5]1} 8( ) 8

2
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Transformation of a plane integral

Example 5.5 Let B C R? be given by
0<z, 0<y, Vo+y<l
find the area of B and the plane integral
I:/ exp [(\/J_J—F \/13)4} dz dy
B

by introducing the new variables

u=x+\/y, v=\T— /Y.

A Transformation of a plane integral.

D Sketch B; find « and y as functions of u and v; compute the Jacobian; find the domain of the

parameters (u,v) € A; finally, apply the transformation theorem.

02 0 02 04 06 08 1 12

Figure 79: The domain A in the (X,Y’)-plane.

I If we put u = /z + \/y and v = \/z — \/y, then
2T =u+v and 2y =u—v,

thus
x—l(u+v)2 and —l(u—v)2
~ 1 Y73 ‘
Then we get the Jacobian
O(u, v) dy oy Lu—v) —1(u-v)
ou  Ov
_ ! R I LA B
= plurv)gl ”)‘1 1’_ o (=)

We shall now find the domain of the new parameters A:
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Transformation of a plane integral

1) The boundary part = 0 corresponds to u + v = 0.

2) The boundary part y = 0 corresponds to u — v = 0.

3) The boundary part \/z + ,/y = 1 corresponds to u = 1.

Since a closed and bounded set by the second main theorem of continuous functions is mapped into
a closed and bounded set by this continuous change of variables, the new domain is the triangle A
on the figure.

0.5

02002 04 06 08 2
X

Figure 80: The domain A in the (U, V)-plane.

Note that the Jacobian is negative on A, so this time we shall need the absolute values in the
formula.

By the transformation theorem,

area(B)

and

O(z,y)
A(u,v)

2

= /dacdy:/
B A

2

1 1 u 1 1
= - 2N dvpdu= uv —
2/0 {~/—u(u U) 2 0
I 2 2 ! 1
_ - 203 — 243 :_/ 3 9, _ =
2/0(u gu)du 30udu 5

/Bexp {(\/5+\/§)4) dedy = %/Aexp (u4) -(

1
dudv = —/(u2 —v?) du dv
A

1 u
3 v?’} » du

2) du dv

s [ et - abiu=3 [ o) i

T, e—1
- dt = .
6/06 6
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Calculus 2c-5 Transformation of a plane integral

Example 5.6 Define a vector field r : R? — R? in the following way,
r(u,v) = (" cosv,e" sinv).
Prove that the Jacobian J, is different from zero almost everywhere, and that r is not injective.

A Jacobian and a non-injective transformation.
D Compute and exploit the periodicity.
I The Jacobian is

a(z,y) _ ou v _ e“cosv —e'sinw _ o,
9(u,v) @ @ esinv e* cosv
ou Ov

Then note that (u,v) = (ug, vo + 2p7), p € Z, are all mapped into the same point
(z,y) = (e"° cosvp, " sinwvy) ,
so the transformation is not injective.

REMARK. We may add that R? by r is mapped (infinitely often) onto R?\ {(0,0)}.

Example 5.7 Define a vector field r : R2 — R? as follows:

r(u,v) = (u* — v, 2uv) .
Prove that the Jacobian Jy is different from zero almost everywhere ant that r is not injective.
A Jacobian and a non-injective transformation.

D Calculate the Jacobian and find two different (u, v)-points which are mapped into the same (z,y).

I The Jacobian is

Oox Ox

ou v 2u —2v
Oz,y) | ow v | _ —4(u+v2) £0  for (u,v) # (0,0).
9(u,v) @ @ 2v 2u

ou Ov

Clearly, (u,v) and (—u, —v) are mapped into the same point,

2

(z,y) = (u — vz,qu) ,

so the map is not injective for (u,v) # (0,0).
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Example 5.8 Let B be the parallelogram of vertices (0,0), (1,—1), (2,1) and (3,0). Compute the
plane integral

- cos(% m(x +y))
=

dz d

1+a—2y 4

by introducing the new variables
u=x+y, v=1x—2y.

A Plane integral by a change of variables and the transformation formula.

D Sketch B and find the domain D. Compute the Jacobian and insert into the formula.
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Transformation of a plane integral

Figure 81: The parallelogram B.

I It follows from the figure that

u=xz+y€|0,3] and v=ux—2y€l0,3],

and the new domain is the square D = [0, 3] x [0, 3].
From
eg=gutgv an y=g3u—30

follows that the Jacobian is

o(x,y) _ ‘
(u, )

WI—IN

W=

When we finally put everything into the transformation formula, then

1,

/ / cos( (Jc—l—y)) d:cdy:/ 005(2 ) dudu
1/3 m /3 dv 1 2
= = COS(*U)d’Uﬁ — =
9 0 2 0 1+U 9 ™

2 3
= o {sin (;) —O} {ln4-In1} =—— ln2

|:Sln ( u)} [In(1 4 v))3
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Example 5.9 Let B be the plane set which is bounded by the X -axis and the line of equation y = x

and an arc of the parabola given by
Se=4+y>,  ye[01].

Calculate the plane integral

4
I:/cos (\/§x+y+\/§xy> dx dy
B 4 4

by introducing the new variables (u,v) given by

5x=u2—|—v2, 2y = uv, —u <o <u.

A Plane integral by a change of variables and the transformation formula.

D Sketch B and find the new domain D. Compute the Jacobian and put everything into the formula.

Figure 82: The point set B.

I It follows from 5z = u? 4+ v? and 2y = wv that

5r + 4y = u? + 0% + 2uv = (u +v)?, 5 — 4y = u® + v — 2uv = (u —v)?.

Since |v| < u, we get from this

u+v=-+5r+4y and u—v=++/bxr— 4y,

hence

and

. Vbhr + 4y — /bxr — 4y

Vhx + 4y + v/br — 4y
u =
2

2

Then we determine the boundary curves of the new domain.
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Calculus 2c-5 Transformation of a plane integral

1) Ify =z, z €[0,1], then

uzivgx;\@:g\/g and v:—vgm;\ﬁ:\/@

1
so this boundary curve is transformed into v = 5 Then by a small consideration, u € [0, 2].

2) Ify=0,z¢ [0, %] on the X-axis, then v = 0 and u = /5 € [0, 2].
3) If finally 5z = 4 + y2, y € [0, 1], then
44y =u? + 02 and 4y = 2uw,
ie.
(u+v)?=(y+2?> og (u—v)?=(2-y)?
thus
ut+v=y+22>0 and u—v=2-—y2>0,

or u=2and v =y € [0,1]. Then we can sketch the new domain (a triangle).

0 05 i 15 2

Since
1 1

r= @40, y= g,

we get the Jacobian
2 2
B 5% 5Y 1
a(x;y) _ =< (u2—v2)>0
(u,v) 1y lu

Finally, since

5 1 1 °

1ity= Z(5x+4y) =7 (u® +v* 4 2uw) = (u—;v) ;
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and similarly,

)
4

2
u—v

we get the plane integral

1117 N o5, 11 a2 1

= 32—/0 cos(u)udu—@[bm(u)]o @smm
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Calculus 2c-5 Transformation of a plane integral

Example 5.10 Let B be the plane point set which is bounded by the X -axis and the line of equation
1
Yy = 3 x, and the branches of the hyperbola,

2 —y*=1, x>0, and 2> —y>=4, x>0.

Compute the plane integral

I:/ Ty exp(x2 —y2) dz dy
BX¥ Y
by introducing the new variables (u,v) given by

x = u coshw, y = u sinh v.

A Transformation of a plane integral.

D Sketch the domain B, and find the domain D of the new variables, and compute the Jacobian.
Finally, insert everything into the transformation formula.

Figure 84: The domain B.

IIfy=0,2 >0, then v =0 and x = u, hence the segment on the X-axis is transformed onto a
segment on the U-axis.

1 1
If y = = x, then u sinhv = 3 u cosh v, i.e.

1 e'—e¥ €21
tanhv = = = = ,
2 ev4e v 41

1
or e?’ +1=2¢e%" — 2, thus e?* = 3, and hence v = 3 In 3, and u is a “free” variable.

If 22 —y?> =1 2 > 0, then u? = 1, and since u > 0, we must have u = 1.

If 22 —y? = 4, 2 > 0, then ©? = 4, and since u > 0, we must have u = 2.
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Calculus 2c-5 Transformation of a plane integral

Summarizing, the new domain is the rectangle
1
D =11,2] x [0,5 ln3} .

Then the Jacobian is computed,

d(z,y)

o(u,v)

coshv wu sinhv

. =u > 0.
sinhv wu coshv

By the transformation formula,

h inh
I = /x—i—y exp(acQ—yQ) dxdy:/ u(cos U+S,m v) exp(uZ)-ududv
BT—Y p wcoshv — sinh v)

2 1n3
= / e?? exp (uz) u du dv :/ exp (uz) wdu - /2 e?? dv
D 1 0

= gl ()] ) = (-0 = 5 ().

N o

Example 5.11 A triangle B in the (X,Y)-plane is given by the inequalities
r+y=>1, 2y —x < 2, y—2x > —2.

By introducing

©u=z+y, v=z-y,

we get a map from the (X,Y)-plane onto the (U,V)-plane.

1) Prove that the image D in the (U, V)-plane of B by this map is given by

1 <u<4, u—4 <3v<4—u,

and sketch D.

2) Compute the plane integral

3
/ dx dy
BITTY

by introducing the new variables given by (6).

A Transformation of a plane integral.

D Find the domain of the new variables D and compute the Jacobian, and then finally insert into
the formula.

I 1) It follows from (5.11) that

u—+v uU—v
o) = .
2 & Y=

Tr =

Hence
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0.54

-0.5

1]

Figure 85: The new domain D

a) x +y > 1 is transformed into u > 1,
b) 2y — x < 2 is transformed into u — 3v < 4,
¢) y — 2z > —2 is transformed into u + 3v < 4.

We get by a rearrangement, u — 4 < 3v < 4 — u, hence u < 4, and

D={(u,v) |1<u<4,u—4<3v<4-—u}

We can here exploit that it is given that B is a triangle and thus bounded. The transformation
(5.11) is continuous, so D is connected an bounded, and then we can sketch the three boundary

lines and identify the image as the bounded part.

2) The Jacobian is
1 1
owy) |2 2|_ 1
8(u,v) N 1 1 N 2
2 2

Then by the transformation formula,

3 |0(x,y) 3 4
Lyt = [ g wv=3/ 1/
4 —u 4

u

3 (41 4
e Z.9. =
2/1u du /1(

’ dv} du

)du:4ln4—3:81n2—3.

4—u
3

1
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Calculus 2c-5 Transformation of a plane integral

Example 5.12 Let B be the bounded domain which is given by the inequalities

et <y<2e " et <y <?er.

1. Sketch B.

If we put

() u=ye", v=ye ™,

we get a map of the (X,Y)-plane into the (U,V)-plane.

2. Prove that the image of B by this map is the square [1,2] x [1,2].

3. Compute the plane integral
I :/ 49% exp (y2 —|—x) dx dy
B

by introducing the new variables given by (7).

A Transformation of a plane integral.

D Follow the guidelines supplied by a computation of the Jacobian before everything is put into the
transformation formula.

ALTERNATIVELY, one can actually in this case compute the plane integral directly.
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Calculus 2c-5 Transformation of a plane integral

05

04 02 0 02 04

x

Figure 86: The domain B.

I 1) Let us first find the intersection point of the boundary curves of B.

1
a) If y =e"* = 2¢*, then © = 5 In2 and hence y = /2.

1
b) If y = e® = 2e~ 7, then © = 3 In2 and hence y = /2.
¢) The remaining two intersection points are immediately seen to be (0,1) and (0, 2).
Then it is easy to sketch the domain B, even if one does not have MAPLE at hand.

By the change of variables u = ye® and v = ye™ 7,

1
a) y=e* and x € [O, B In 2} is transformed into v = 1 and u = €2* € [1,2],
1
b) y=2¢"7 and z € [0, 3 In 2} is transformed into u = 2 and v = 2¢%* € [1,2],
1
c) y=2e" and x € {—5 In 2,0} is transformed into v = 2 and u = 22 € [1, 2],

1
d) y=e*and x € [—5 In2, O] is transformed into u = 1 and v = e=2* € [1, 2].

Thus we get the new domain D = [1,2] x [1,2] in the (U, V)-plane.

Then we find x and y as functions of u and v:

From y > 1 and u, v > 1, follows that

Yo v a=im(Y)=tmu-l
v—e , dvs. a:—2ln ” —2lnu 2lnv.

From v = ye™*, follows that

u
y:’UexZ’U\/j:VUU
v

This gives the Jacobian

O(z,y) L — L 1 1 1 11
— 1 2u 1 2v — + — _ >0
A(u,v) V2 3% 4 \Vuv  Juw 2 uv
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Calculus 2c-5 Transformation of a plane integral

When we insert into the transformation formula, we get

1 u 1
I = 4y? 2 :/4 -1
/B Y exp(y —|—x) dz dy i uvexp(uv+2 n( ))2\/_dudv
/4uv exp(uv) -
D

1
2
2
2/ {/ u exp(uv dv} u = 2 exp(uv)]%:1 du
1 1

2
2/ (62“—6“) du = [62u—26u}1264—262—62+26=e4—362+26.
1

u
v

dudv —/ 2u exp(uwv) du dv
D

ALTERNATIVELY, it is actually possible to compute the plane integral directly without using
the transformation theorem. First write B = By U B, as an (almost) disjoint union where

Blz{(x,y) \/53?/52’1“(%>§x§1n<§)}

and
1

BQ{(IE,Z/) 1§y§\/§,ln<—>§x§1ny},
Y

We have the following natural splitting,

/ 49/% exp (y2 +x) dedy =11 + I,
B

where
2 ln(%)
I, = / 4y exp y +1’) dmdy—/ / 49? exp (y2) e dx » dy
v2 (JIn(§)
2 2y 2
= / 4y2 exp . <— — —) dy = / (8y — 2y3) exp (yQ) dy
V2 y 2 V2
4
= / 2 ( ) exp (y%) dey:/ (4 —t)et dt = [(5—t)et};1=e4—362,
V2 t=2
and

\/5 Iny
I, = / 4% exp y —l—x) dz dy —/ {/ 49/% exp (y2) e’ dx} dy
Bs 1 In(1)
V2 1 V2
/1 492 exp ) (y — ;) dy = /1 (4y3 - 4y) exp (y2) dy

2
= / (24* - 2) exp(y2)~2ydy:2/ (¢t —1)et dt = 2[(t — 2)e']’ = 2e,
1 1

Summarizing we get

/ 4y exp (y2 +x) dedy =1, + I, = e* — 32 + 2e.
B
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